Chemical Equilibrium

ELEMENTRY

Q. 1 (3)

When rate of forward reaction is equal to rate of backward reaction the reaction is said to be in equilibrium.
Q. 2 (1)
Q. 3 (1)
Q. 4 (4)
Q. $5 \quad$ (4)
Q. 6 (1)

$$
\mathrm{H}_{2}+\mathrm{I}_{2} 2 \mathrm{HI} ;[\mathrm{HI}]=0.80,\left[\mathrm{H}_{2}\right]=0.10,\left[\mathrm{I}_{2}\right]=0.10
$$

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{0.80 \times 0.80}{0.10 \times 0.10}=64
$$

Q. 7 (1)

For reaction $\mathrm{A}+2 \mathrm{~B} \rightleftharpoons \mathrm{C}$

$$
\mathrm{K}=\frac{[\mathrm{C}]}{[\mathrm{A}][\mathrm{B}]^{2}}=\frac{0.216}{0.06 \times 0.12 \times 0.12}=250
$$

Q. 8 (4)
Q. 9 (3)
Q. 10 (3)

$$
\mathrm{K}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{\left[2 \times \frac{10^{-3}}{2}\right]^{2}}{\left[\frac{.2}{2}\right]}=\frac{10^{-6}}{10^{-1}}=10^{-5}
$$

Q. 11 (2)

$$
\text { For } \mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}
$$

$$
\mathrm{K}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}=\frac{0.4 \times 1}{0.5 \times 0.8}=1
$$

Q. 12 (2)

Given, $\mathrm{CaCO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \uparrow$
$\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$

$$
\begin{aligned}
& \mathrm{Kp}_{2}=\frac{\left[\mathrm{pCO}^{2}\right.}{\left[\mathrm{pCO}_{2}\right]} ; \mathrm{pCO}=\sqrt{\left[\mathrm{Kp}_{1} \times \mathrm{Kp}_{2}\right]} \\
& \mathrm{pCO}=\sqrt{\left[8 \times 10^{-2} \times 2\right]}=\sqrt{16 \times 10^{-2}}=4 \times 10^{-1}=0.4
\end{aligned}
$$

Q. 13 (2)

$$
\mathrm{CaCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

$$
\mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{CO}_{2}}
$$

Solid molecule does not have partial pressure so in calculation of K_{p} only $\mathrm{P}_{\mathrm{CO}_{2}}$ is applicable.
Q. 14 (4)

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CO}+2 \mathrm{H}_{2} \\
& \frac{\left[\mathrm{H}_{2}\right]^{2}[\mathrm{CO}]}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}=\frac{0.1 \times 0.1 \times 1}{2}=\frac{0.01}{2}=\frac{10 \times 10^{-3}}{2}=5 \times 10^{-3}
\end{aligned}
$$

Q. 15 (1)

$$
\mathrm{n}_{\mathrm{p}}=\mathrm{n}_{\mathrm{r}} \text { then } \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}
$$

where $n_{p}=$ no. of moles of product $n_{r}=$ no. of moles of reactant.
Q. 16 (3)

$$
\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}} ; \Delta \mathrm{n}=2-2=0
$$

Q. 17 (3)

For the reaction $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
$\Delta \mathrm{n}=0$
So $\quad \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}} \backslash 50.0$
Q. 18 (4)

For reaction $2 \mathrm{SO}_{3} \rightleftharpoons \mathrm{O}_{2}+2 \mathrm{SO}_{2}$
is + ve so K_{p} is more than K_{c}
By $K_{p}=K_{c}(R T)^{\Delta n}$
Q. 19 (3)
$\Delta \mathrm{n}=2-1=1$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})$
Q. 20 (3)

If $\Delta \mathrm{n}=0$ then $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
Q. 21 (2)
Q. 22 (3)

For this reaction there is no change in equilibrium constant by change of volume.
Q. 23 (3)

Equilibrium constant is independent of original concentration of reactant.
Q. 24 (3)

$$
\mathrm{K}_{1}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}} \text { and } \mathrm{K}_{2}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}} ; \mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}^{2}}
$$

Q. 25 (2)

$$
\mathrm{K}^{\prime}=\mathrm{K}^{\mathrm{n}} ; \text { Hence } \mathrm{n}=\frac{1}{2}
$$

$$
\therefore \mathrm{K}^{\prime}=\mathrm{K}^{1 / 2}=\sqrt{\mathrm{K}}
$$

Q. 26 (3)
Q. 27 (4)
K for dissociation of $H I=$?
$\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$

$$
\mathrm{K}_{\mathrm{a}}=50, \mathrm{~K}_{\mathrm{b}}=\frac{1}{50}=0.02
$$

Q. 28 (1)
Q. 29 (2)
Q. 30 (1)

$$
\frac{22}{100} \times 3.2=0.704
$$

at equil. moles of $\mathrm{HI}=3.2-0.704=2.496$
Q. 31 (2)
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{PCl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{\left[\frac{20}{100}\right] \times\left[\frac{20}{100}\right]}{\left[\frac{80}{100}\right]}$
$=\frac{0.2 \times 0.2}{0.8}=\frac{0.04}{0.8}=0.05$
Q. 32 (4)

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{HS} \rightleftharpoons \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})} \\
& \begin{array}{lll}
\mathrm{a} & 0.5 \mathrm{~atm} & \\
\mathrm{a}-\mathrm{x} & 0.5+\mathrm{x} & \mathrm{x}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 7.11=1.5+a \\
& a=\frac{101}{18}=5.61
\end{aligned}
$$

Q. 18 (D)

Given:- When $\mathrm{N}_{2} \mathrm{O}_{5}$ is heated T, its dissociates

$$
\mathrm{N}_{2} \mathrm{O}_{5} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{O}_{2}: \mathrm{K}_{\mathrm{C}}=2.5
$$

$$
4-x \quad x \quad x
$$

and
$\mathrm{N}_{2} \mathrm{O}_{3} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}+\mathrm{O}_{2} ; \mathrm{K}_{\mathrm{C}}$
$\mathrm{X}-\mathrm{y} \quad \mathrm{y} \quad \mathrm{y}+\mathrm{x}$
$x+y=2.5$
$K_{C}=\frac{(x+y)(x-y)}{4-x}$
$\Rightarrow \quad \frac{2.5(x-y)}{4-x}=2.5$ [from eq. (1)]
$\Rightarrow \mathrm{x}-\mathrm{y}=4-\mathrm{x}$
$\Rightarrow \quad 2 \mathrm{x}-\mathrm{y}=4$
$\Rightarrow \quad$ from (1) and (2)

$$
3 x=6.5
$$

$\mathrm{x}=2.17$
from(1)

$$
2.17+y=2.5
$$

$$
\mathrm{y}=2.5-2.17
$$

$$
y=0.334
$$

Equilibrium concentration of $\mathrm{N}_{2} \mathrm{O}$ is 0.334 .

Q. 19 (D)

$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}) \mathrm{K}_{\mathrm{p}}=4 \times 10^{-3}$
$\mathrm{SO}_{3} \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \mathrm{K}_{\mathrm{p}}^{\prime}=\frac{1}{\mathrm{Kp}}$

$$
\mathrm{K}_{\mathrm{p}}^{\prime}=\left(\frac{1}{4 \times 10^{-3}}\right)
$$

$2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}^{\prime \prime}=\left(\mathrm{K}_{\mathrm{p}}^{\prime}\right)^{2}$
$=\left[\frac{1}{4 \times 10^{-3}}\right]^{2}=\left[\frac{1000}{4}\right]^{2}=6250=625 \times 10^{2}$

$6.25 \times 10^{4} \mathrm{~atm}$.

Q. 20 (D)
$\begin{array}{cll}\text { Given: } & \mathrm{NH}_{4} \mathrm{HS} & \rightleftharpoons \\ (\mathrm{s}) & \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\ \text { a mole } & (\mathrm{g}) & (\mathrm{g}) \\ \text { at eq. } & 0.5 \mathrm{~atm} & 0 \\ \text { a } & 0.5+\mathrm{x} & \mathrm{x}\end{array}$
atm atm
total pressure $=0.5+x+x=0.84$

$$
\begin{aligned}
2 \mathrm{x} & =0.34 \\
\mathrm{x} & =.17
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{NH}_{3}}=0.5+\mathrm{x} \\
& =0.5+.17 \Rightarrow .67
\end{aligned}
$$

Q. 24 (C)

Given:-
$\mathrm{K}_{\mathrm{p}}=12 \times 10^{8} \mathrm{~atm}$ for reaction

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

$2 \mathrm{~atm} \quad 2 \mathrm{~atm} 2 \mathrm{~atm}$

$$
\frac{380}{760}=\frac{1}{2} \quad 2-2 y \quad 2+4 x \quad 2+x
$$

$\mathrm{K}_{\mathrm{p}}=12 \times 10^{8} ; \mathrm{K}_{\mathrm{p}} \gg 1$
$\Rightarrow \quad \mathrm{x} \approx 1$
$\Rightarrow \quad 12 \times 10^{8}=\frac{(3) \times(6)^{4}}{\mathrm{y}^{2} \times(1 / 2)^{2}}$
$\Rightarrow \quad \frac{12 \times 10^{8}}{3 \times 36 \times 36 \times 4}=\frac{1}{y^{2}}$
$\Rightarrow \quad y=\frac{36 \times 2}{2 \times 10^{4}}=2 \times 18 \times 10^{-4}$
$y=36 \times 10^{-4} \mathrm{~atm}$
$y=3.6 \times 10^{-3} \mathrm{~atm}$

Q. 25 (A)

Given-Equimolar mixture of two gaven
A_{2} and B_{2}

$$
\mathrm{A}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~A}(\mathrm{~g}) \quad \mathrm{Kp}_{1}
$$

At eq. $1-x \quad 2 x$

$$
\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})
$$

At eq. $1-4 \quad 24$
Now $\quad \mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB} \quad \mathrm{Kp}_{3}=2$
initally $1-\mathrm{x} \quad 1-4 \quad 0$
At eq. $1-x-z \quad 1-y-z \quad 2 z$

$$
\mathrm{P}_{\mathrm{e}_{\mathrm{v}}}=\mathrm{P}_{\mathrm{A}_{2}}+\mathrm{P}_{\mathrm{B}_{2}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{AB}}
$$

$\Rightarrow \quad 1-\mathrm{x}-\mathrm{z}+1-\mathrm{y}-\mathrm{z}+2 \mathrm{x}+24+2 \mathrm{z}$
$\mathrm{P}_{\text {eq. }} \Rightarrow 2+\mathrm{x}+\mathrm{y}$
$2+x+y=2.75$
$x+y=0.75$
[as $\mathrm{P}_{\mathrm{e}_{\mathrm{v}}}=2.75$]
$x+y=0.75$
As partial pressure of $\mathrm{AB}(\mathrm{g})$
$\mathrm{P}_{\mathrm{AB}}=0.5$
$27=0.5$
$7=0.25$

$$
\begin{align*}
& \mathrm{K}_{\mathrm{P}_{3}}=\frac{\left(\mathrm{P}_{\mathrm{AB}}\right)^{2}}{\mathrm{P}_{\mathrm{A}_{2}} \times \mathrm{P}_{\mathrm{B}_{2}}}=\frac{(0.5)^{2}}{(0.75-x)(0.75-\mathrm{y})} \tag{3}\\
& \mathrm{K}_{\mathrm{p}_{1}}=\frac{\left(\mathrm{P}_{\mathrm{A}}\right)^{2}}{\mathrm{P}_{\mathrm{A}_{2}}}=\frac{(2 \mathrm{x})^{2}}{(0.75-\mathrm{x})} \\
& \mathrm{K}_{\mathrm{p}_{2}}=\frac{\left(\mathrm{P}_{\mathrm{B}}\right)^{2}}{\mathrm{P}_{\mathrm{B}_{2}}}=\frac{(2 \mathrm{y})^{2}}{(0.75-\mathrm{y})} \\
& \mathrm{K}_{\mathrm{p}_{1}} \times \mathrm{K}_{\mathrm{p}_{2}}=\frac{(2 \mathrm{x})^{2}\left(2 \mathrm{y}^{2}\right)}{(0.75-\mathrm{x})(0.75-\mathrm{y})} \\
& \Rightarrow \quad \frac{16 x^{2} y^{2}}{(0.75-\mathrm{x})(0.75-\mathrm{y})} \tag{4}
\end{align*}
$$

Now equate with eq. (3)

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{p}_{1}} \times \mathrm{K}_{\mathrm{p}_{2}}=\mathrm{K}_{\mathrm{p}_{3}} & \\
\Rightarrow & .5=4 x y \\
& x+y=.75 \\
\Rightarrow & \quad\left[\text { put } y=\frac{1}{8 x}\right] \\
& 8 x^{2}-6 x+1=0 \\
& x=\frac{1}{4} \\
& \\
& \\
& x=\frac{1}{2}
\end{array}
$$

Now, $\quad \frac{\mathrm{K}_{\mathrm{P}_{1}}}{\mathrm{~K}_{\mathrm{p}_{2}}}=\frac{(1 / 4)(1 / 2)}{1(1 / 4)}=\frac{1}{8}$

$$
\Rightarrow \quad \frac{\mathrm{K}_{\mathrm{P}_{2}}}{\mathrm{~K}_{\mathrm{p}}}=8
$$

Q. 32 (A)

Given :- Heat of reaction (at constant V) $=1200 \mathrm{cal}$ (at constant pressure) $\Rightarrow \mathrm{T}=300 \mathrm{~K}$

$$
\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{~K}_{\mathrm{c}}}=?
$$

$$
\text { Now, } \quad \frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{~K}_{\mathrm{c}}}=\mathrm{e}^{\frac{-\Delta \mathrm{H}}{\mathrm{RT}}}
$$

$$
=\mathrm{e}^{\frac{-1200}{2 \times 300}} \Rightarrow \mathrm{e}^{-2}
$$

$$
\Rightarrow \frac{1}{\mathrm{e}^{2}} \Rightarrow 1.648 \times 10^{3}
$$

Q. 34 (B)

Given rxn -
$\mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g}): \mathrm{K}_{\mathrm{c}}=10^{12}$
$\begin{array}{llll}0.5 & 1 & 0.5 & 3.5\end{array}$
$\mathrm{K}_{\mathrm{C}}=10^{12}$
$\mathrm{Q}_{\mathrm{C}}=\frac{[\mathrm{A}][\mathrm{C}]}{[\mathrm{A}][\mathrm{B}]^{2}} \Rightarrow \frac{0.5 \times 3.5}{0.5}$
$\mathrm{Q}_{\mathrm{C}}=3.5$
$\Rightarrow \quad \mathrm{Q}_{\mathrm{C}}<\mathrm{K}_{\mathrm{C}}$
Forward shilt
Now, $\mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})$

$$
\begin{array}{llll}
\mathrm{y} & 2 \mathrm{y} & 1 & 4
\end{array}
$$

Let
K_{C} is very high
$\therefore \mathrm{x} \sim 0.5$
as $\Rightarrow \mathrm{y}=0.5-\mathrm{x}$ and $1-2 \mathrm{x}=2 \mathrm{y}$
$K_{C}=\frac{[C][D]}{[A][B]^{2}} \Rightarrow \frac{1 \times 4}{4 \times 4 y^{2}}$
$\Rightarrow \quad \frac{4}{4 y^{3}}$
where $\mathrm{K}_{\mathrm{C}}=10^{12}$

$$
\begin{aligned}
& \therefore 10^{12}=\frac{4}{4 y^{3}} \\
& y=10^{-4} \\
& \text { conc}^{\text {n }} \text { of } B=2 y \Rightarrow 2 \times 10^{-4}
\end{aligned}
$$

Q. 36 (A)

$$
\mathrm{S}(\mathrm{~s})+\mathrm{S}^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{S}_{2}^{2-}(\mathrm{aq})
$$

$\mathrm{K}_{1}=12$

$$
2 \mathrm{~S}(\mathrm{~s})+\mathrm{S}^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{S}_{3}^{2-}(\mathrm{aq})
$$

$\mathrm{K}_{2}=132$
Now, $\quad \mathrm{S}_{2}{ }^{2-}(\mathrm{aq})+\mathrm{S}(\mathrm{s}) \rightleftharpoons \mathrm{S}_{3}{ }^{2-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{132}{12}=11$
Q. 37 (B)
(i) $2 \mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}$
(ii) $\mathrm{NO}_{2}+\mathrm{SO}_{2} \rightleftharpoons \mathrm{SO}_{3}+\mathrm{NO}$
(iii) $2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$

Now, -2 (ii) $=(\mathrm{i})+($ iii $)$
so, $\mathrm{K}_{\mathrm{C}_{3}} \times \mathrm{K}_{\mathrm{C}_{1}}=1 / \mathrm{K}^{2} \mathrm{C}_{2}$
Q. 46 (C)

$$
\text { Given :- } \quad \mathrm{A}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{B}_{2}(\mathrm{~g})+\mathrm{C}_{2}(\mathrm{~g})
$$

At eq. $\quad P-x \quad x \quad x$
Total pressure $=P-x+x+x=P+x$
$\Rightarrow \quad \mathrm{P}+\mathrm{x}=7$ [as total pressure $=7] \ldots(1)$
Now, $\quad K_{\mathrm{p}}=\frac{\left[\mathrm{P}_{\mathrm{B}_{2}}\right]\left[\mathrm{P}_{\mathrm{C}_{2}}\right]}{\left[\mathrm{P}_{\mathrm{A}_{2}}\right]}$
$9=\frac{x^{2}}{(P-x)} \quad($ as $K p=9)$
$\begin{array}{ll} & \\ \Rightarrow \quad & 9(7-\mathrm{x}-\mathrm{x})=\mathrm{x}^{2} \quad \text { [fromeq. (1)] } \\ \text { then } \quad & \begin{array}{l}\mathrm{x}^{2}+18 \mathrm{x}-63=0 \\ \mathrm{x}=3 \\ \mathrm{p}+\mathrm{x}=7 \\ \mathrm{p}=4\end{array} \\ \end{array}$
as we know
P.M. $=$ dRT (volume cont.)

$$
\begin{aligned}
& \Rightarrow \quad P \times \frac{1}{M} \& \text { initially only } A_{2} \text { is present } \\
& \Rightarrow \quad \frac{P_{i}}{P_{e q}}=\frac{M_{e q}}{M_{i}} \\
& \Rightarrow \quad \frac{4}{7}=\frac{M_{e q}}{70} \\
& \Rightarrow \quad M_{e q}=40
\end{aligned}
$$

Q. 53 (A)

Given:- V $=250$ lit
$\mathrm{SO}_{2} \mathrm{~S}_{3}(\mathrm{~S})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Sb}(\mathrm{S})+3 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
After equilibrium
$\mathrm{H}_{2} \mathrm{~S}$ treated with excess of Pb^{2+}
$\Rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{PB}^{2+} \longrightarrow \mathrm{PbS}+\mathrm{H}_{2}$
$\therefore \quad$ mole of $\mathrm{PbS}=\frac{1.195}{239}=5 \times 10^{-3}$
mole of $\mathrm{H}_{2} \mathrm{~S}=5 \times 10^{-3}$
mole of H_{2} remaining $=0.01-0.005=0.005$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{3}}{\left[\mathrm{H}_{2}\right]^{3}}=\left(\frac{0.005}{0.005}\right)^{3} \\
& \Rightarrow \mathrm{~K}_{\mathrm{C}}=1
\end{aligned}
$$

Q. 54 (A)

Given :-
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s}) \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=7 \times 10^{-2}$
as given - . 50 mole of H_{2}
1.0 mole of S

Now, $\begin{array}{lll} & \mathrm{H}_{2}(\mathrm{~g}) & + \\ & 0.5 & \mathrm{~S}(\mathrm{~s}) \rightleftharpoons \\ & & \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\ & 0.5-\mathrm{x} & 1.0 \\ & 1-\mathrm{x} & \mathrm{x}\end{array}$
as

$$
K_{C}=K_{P}=\frac{x}{(0.5-x)}
$$

$7 \times 10^{-2}=\frac{x}{(0.5-x)} \quad\left(\right.$ as $\left._{\mathrm{p}}=7 \times 10^{-2}\right)$
$\mathrm{x}=0.035-0.07 \mathrm{x}$
$\Rightarrow \quad \mathrm{x}=\frac{0.035}{1.07}$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}} & =\frac{\left(\frac{0.035}{1.07}\right) \times 0.0821 \times 360}{1}(\text { as } P V=n R T) \\
& =0.966 \mathrm{~atm} .
\end{aligned}
$$

Q. 55 (2)
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
$\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$
$\log \frac{50}{66.9}=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{623}-\frac{1}{721}\right]$
After calculation negative value of $\Delta \mathrm{H}$ is obtained.
Q. 58 (D)
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
If $\Delta \mathrm{n}_{\mathrm{g}}=0 \Rightarrow(2-2)=0$
then no effect of Pressure change
Q. 60 (D)
$\mathrm{Cl}_{2}+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CIF}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-329 \mathrm{Kj}$
ClF_{3} will be inceased when reaction shifted forward.
\Rightarrow Exothermic low temperature
\therefore Addition of reactant
$\Delta n_{g}<0$
\Rightarrow Increase in pressure lower the volume.

Q. 61 (C)

$\mathrm{C}($ diamond $) \rightleftharpoons \mathrm{C}($ graphile $) \Delta \mathrm{H}=-1.9 \mathrm{Kj} /$ mole
It is exothermic reaction
so it favours low temperature
density of graphite is less than diamond \Rightarrow low pessure. but for formation of diamond Reverse condition high temperature \& high pressure

Q. 69 (B)

Addition of inert gas at constant volume has no effect on equilibrium concentrations.
Q. 70 (A)
$\mathrm{AB} \rightleftharpoons \mathrm{A}^{+}+\mathrm{B}^{-} \quad \mathrm{AB}+\mathrm{B}^{-} \rightleftharpoons \mathrm{AB}_{2}^{-}$
$a-x-y \quad y \quad(y-x) \quad(a-x-y) y-x \quad x$
$K_{1}=\frac{y(y-x)}{(a-x-y)} \quad K_{2}=\frac{x}{(a-x-y)(y-x)}$
$\frac{K_{1}}{K_{2}}=\frac{\frac{\left[\frac{y(y-x)}{(a-x-y)}\right]}{x}}{(a-x-y)(y-x)} \Rightarrow \frac{K_{1}}{K_{2}}=\frac{y}{x}(y-x)^{2}$
Q. 71 (1)
$\ln \mathrm{K}_{\mathrm{p}}=\frac{-\Delta \mathrm{H}}{\mathrm{RT}}+\ln \mathrm{A}$
Exothemic $\Delta \mathrm{H}<0$
slope +Ve
Q. 73 (D)

$$
\begin{array}{ll}
\mathrm{AB} \rightleftharpoons \mathrm{~A}^{+}+\mathrm{B}^{-} & \mathrm{AB}+\mathrm{B}^{-} \rightleftharpoons \mathrm{AB}_{2}^{-} \\
\mathrm{K}_{1}=\frac{\left[\mathrm{A}^{+}\right]\left[\mathrm{B}^{-}\right]}{[\mathrm{AB}]} & \mathrm{K}_{2}=\frac{\left[\mathrm{AB}_{2}^{-}\right]}{[\mathrm{AB}]\left[\mathrm{B}^{-}\right]}
\end{array}
$$

$$
\mathrm{K}_{1} / \mathrm{K}_{2}=\frac{\left[\mathrm{A}^{+}\right]\left[\mathrm{B}^{-}\right]}{[\mathrm{AB}]} \cdot \frac{[\mathrm{AB}]\left[\mathrm{B}^{-}\right]}{\left[\mathrm{AB}_{2}^{-}\right]}=\frac{\left[\mathrm{A}^{+}\right]}{\left[\mathrm{AB}_{2}^{-}\right]}
$$

$\Rightarrow \frac{\left[\mathrm{A}^{+}\right]}{\left[\mathrm{AB}_{2}{ }^{-}\right]}=\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}} \cdot \frac{1}{\left[\mathrm{~B}^{-}\right]^{2}}$
Therefore, (D) option is correct.

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (A)
$\mathrm{X}_{2}+\mathrm{Y}_{2} \rightleftharpoons 2 \mathrm{XY}$
$\begin{array}{lll}\frac{1}{3}-x & \frac{2}{3}-x & 2 x\end{array} 2 x=0.6$
$\Rightarrow \quad \mathrm{x}=0.3$
$\left[\mathrm{x}_{2}\right]=\frac{1}{3}-0.3 \quad\left[\mathrm{y}_{2}\right]=\frac{2}{3}-0.3$
Therefore, (A) option is correct.
Q. 2 (D)
$\mathrm{Ni}^{+2}+6 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)\right]^{+6} \quad \mathrm{~K}_{\mathrm{f}}=6 \times 10^{8}$
$\mathrm{t}=0 \quad 0.01$ mole
0.1 mole
$K_{c}=\frac{\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{+6}\right]}{\left[\mathrm{Ni}^{+2}\left[\mathrm{NH}_{3}\right]^{6}\right.}=\frac{(0.1)}{\left[\mathrm{Ni}^{+2}\right](0.4)^{6}}$
$=6 \times 10^{8} . \quad\left[\mathrm{Ni}^{+2}\right]=4 \times 10^{-8}$.
Q. 3 (C)
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=\frac{\frac{\alpha \text { Po }}{2(1+\alpha)}\left\{\frac{3 \alpha \mathrm{Po}}{2(1+\alpha)}\right\}^{3}}{\left\{\frac{1-\alpha}{1+\alpha} \mathrm{Po}\right\}^{2}}$

$$
\begin{array}{lll}
1-\alpha & \frac{\alpha}{2} & \frac{3 \alpha}{2}
\end{array}
$$

$1-\alpha \simeq 1$ and $1+\alpha \simeq 1 \quad \Rightarrow 27 \times 10^{-8} \mathrm{P}_{\mathrm{o}}^{2}=\frac{27}{16}$
$\mathrm{Po}^{2} \times \alpha^{4}$
$\alpha=2 \times 10^{-2}$
Q. 4 (A)
$2 \mathrm{AB}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{A}_{2}(\mathrm{~g})+4 \mathrm{~B}_{2}(\mathrm{~g})$
$\sum \mathrm{n}=1+\frac{3 \alpha}{2} \simeq 1$
$1-\alpha \quad \frac{\alpha}{2} \quad 2 x \quad 1-\alpha \simeq 1$
$K_{P}=\frac{\left(\frac{\alpha}{2} P\right)\left(\frac{2 \alpha}{1} \times P\right)^{4}}{(P)^{2}}=8 P^{3} \alpha^{5}$
Q. 5 (B)
$2 \mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=4 \times 10^{14}$
$\mathrm{p}_{\mathrm{O}_{2}} \gg \mathrm{p}_{\mathrm{O}_{3}}$
$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}_{\mathrm{o}_{2}}^{3}}{\mathrm{p}_{\mathrm{o}_{3}}^{2}} \quad \mathrm{p}_{\mathrm{O}_{2}}+\mathrm{P}_{\mathrm{O}_{3}}=8$
$\Rightarrow \mathrm{P}_{\mathrm{O}_{2}} \simeq 8 \mathrm{~atm}$.
$4 \times 10^{14}=\frac{8^{3}}{\mathrm{p}_{\mathrm{O}_{3}}^{2}} \quad \mathrm{p}_{\mathrm{O}_{3}}^{2}=11.3 \times 10^{-7} \quad$ Therefore,
(B) option is correct.
Q. 6 (B)
(I) $\quad \mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} \mathrm{~K}_{\mathrm{c}}=4$
at point - A
$\mathrm{Q}=\frac{[\text { Product }]}{[\text { Reac tant }]}=0$
So, Q have minimum value at point A .
(II) at point $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=\left[\mathrm{No}_{2}\right]=0.1 \mathrm{~m}$
$\mathrm{Q}=\frac{\left[\mathrm{No}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{0.1 \times 0.1}{0.1}=0.1$
$\mathrm{Q}<\mathrm{K}_{\mathrm{c}}$
So, reaction proceeds left to right
(III) $\quad \mathrm{K}_{\mathrm{c}}=\mathrm{Q}$ at point $[\mathrm{D} \& \mathrm{~F}]$.
Q. 7 (B)

Given:
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \frac{1}{\mathrm{~K}_{1}}$
$2 \mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+2() \mathrm{O}_{2} \mathrm{~K}_{2}$
$2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{CO}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{CO}(\mathrm{g}) \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$
$\Rightarrow \mathrm{K}=\sqrt{\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}}$
$\mathrm{K}=2.58$
Q. 8 (B)

$$
\begin{aligned}
& \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \\
& \mathrm{M}_{\text {mix }}=\frac{0.9 \times 0.082 \times 1000}{1.23}=60
\end{aligned}
$$

$$
1-\alpha \alpha \frac{\alpha}{2}
$$

$$
M_{\text {mix }}=\frac{\alpha \cdot M_{\mathrm{so} 2}+\frac{\alpha}{2} \cdot M_{\mathrm{o}_{2}}+(1-\alpha) M_{\mathrm{so} 3}}{1+\frac{\alpha}{2}}
$$

$$
1+\frac{\alpha}{2}=\frac{80}{60}
$$

$$
\frac{\alpha}{2}=\frac{20}{60}
$$

$$
\alpha=\frac{2}{3}
$$

Q. 9 (D)
$\mathrm{CaCO}_{3} \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=\left(\mathrm{P}_{\mathrm{CO}_{2}}\right)$
$\left(\mathrm{P}_{\mathrm{CO}_{2}}\right)$ is equal to equilibrium constant which only change with canging only K_{P}
But equilibrium constant only depends on temperature so.
Q. 10 (B)
$\mathrm{P}_{1}=15 \mathrm{~atm} ; \mathrm{T}_{1}=300 \mathrm{~K}$.
Equilibrium temperature is $300^{\circ} \mathrm{C}$ that is 573 K .
So first of all we have to calculate pressure of NH_{3} at 573 K .

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}=\frac{15}{300}=\frac{P_{2}}{573}
$$

$\mathbf{P}_{2}=\mathbf{2 8 . 6 5} \mathbf{~ a t m}$ at $300^{\circ} \mathrm{C}$.

$$
\mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+
$$

$\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})$.

$\mathrm{t}=0$	28.65 atm	0	0
$\mathrm{t}=\mathrm{t}_{\text {eq. }}$	$[28.65-\mathrm{x}]$	$\frac{\mathrm{x}}{2} \mathrm{~atm}$	$\frac{3}{2} \mathrm{x}$

But according to question.

$$
\begin{aligned}
& P_{\text {total }}=28.65-x+\frac{x}{2}+\frac{3}{2} x \\
= & 28.65=x=40.11 \\
x & =11.46
\end{aligned}
$$

Degree of dissociation of $\mathrm{NH}_{3}=\frac{11.46}{28.65}=0.4$.

Q. 11 (B)

$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{K}_{\mathrm{P}}=2.25 \times 10^{-4}$
$\mathrm{K}_{\mathrm{P}}=\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}=2.25 \times 10^{-4}$
$\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}=1.5 \times 10^{-2}$
Vapour $\operatorname{Pr}=\frac{22.8}{760}=3 \times 10^{-2}$
R.H. $=\frac{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}}{\text { V.P. }} \times 100=50 \%$

Therefore, (B) option is correct.
Q. 12 (A)
$\mathrm{SrCI}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{SrCI}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{K}_{\mathrm{p}}=16 \times 10^{-12}$
$\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)^{4}=\mathrm{K}_{\mathrm{P}}$
$\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}=\left(\mathrm{K}_{\mathrm{P}}\right)^{1 / 4}=2 \times 10^{-3} \mathrm{~atm}$
$\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}=\frac{7.6}{760}=1.0 \times 10^{-2}$
$n_{H_{2} \mathrm{O}}=\frac{P V}{R T}=\frac{10^{-2} \times 1}{0.082 \times 274}=4.45 \times 10^{-4}$
$\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{2 \times 10^{-3}}{0.082 \times 274}=8.9 \times 10^{-5} \quad \therefore \mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}$ absorbed
$=3.56 \times 10^{-4}$
\therefore wt absorbed $=6.4 \mathrm{mg}$. Therefore, (A) option is correct.
Q. 13 (D)

As we know
$\ln \left(\frac{\mathrm{K}_{\mathrm{P}_{2}}}{\mathrm{~K}_{\mathrm{p}_{1}}}\right)=\frac{\Delta \mathrm{H}^{\circ}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)$
$\ln 4=\frac{\Delta \mathrm{H}^{\circ}}{8.314}\left(\frac{1}{298}-\frac{1}{313}\right)$

$$
\Delta \mathrm{H}^{\circ}=71.6 \mathrm{~kJ}
$$

Q. 14 (A)

$$
\begin{aligned}
& 2 \mathrm{~A}_{2} \mathrm{~B}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \mathrm{K}_{\mathrm{P}}=\mathrm{P} \\
& 4(1-\alpha) 4 \alpha \quad 2 \alpha \quad \sum \mathrm{n}=4+2 \alpha \\
& \mathrm{~K}_{\mathrm{P}}=\frac{\left(\frac{4 \alpha}{4+2 \alpha} \times \mathrm{p}\right)^{2}\left(\frac{2 \alpha}{4+2 \alpha} \times \mathrm{p}\right)}{\left(\frac{4(1-\alpha)}{4+2 \alpha} \times \mathrm{P}\right)^{2}}=\mathrm{P} \\
& \Rightarrow \quad \begin{array}{l}
2 \alpha^{3}=(1-\alpha)^{2}(4+2 \alpha) \\
2 \alpha^{3}=\left(1+\alpha^{2}-2 \alpha\right)(4+2 \alpha) \\
2 \alpha^{3}=4+2 \alpha+4 \alpha^{2}+2 \alpha^{3}-8 \alpha-4 \alpha^{2} \\
\alpha=\frac{2}{3}
\end{array}
\end{aligned}
$$

Q. 15 (D)

On increasing temperature though reaction equilibrium shifts in the backward direction but for rate of reaction to be higher, higher temperature is required and particle $500^{\circ} \mathrm{C}$ is found to be optimum temperautre.
Q. 16 (C)
$\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}(\mathrm{g})$
reaction is endothermic
$\Delta \mathrm{H}>0 \Rightarrow$ High temperature
$\Delta \mathrm{n}_{\mathrm{g}}>0$ low pressure
Q. 17 (B)
$\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{K}_{\mathrm{P}}=\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)$
When neon is added at constant pressure, we have to increase volume of the container. So more water will evaporate to mantain equilibrium.

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (A,C)
$A B \rightleftharpoons A^{+}+$
B^{-}
K_{1}
y
$\mathrm{AB}+\mathrm{B}^{-}$
$\mathrm{y}-\mathrm{x}$ $\mathrm{AB}_{2}^{-} \quad \begin{aligned} & \mathrm{y}-\mathrm{x} \\ & \mathrm{K}_{2} \\ & \mathrm{x}\end{aligned}$
$\Rightarrow K_{1}=(y-x) y K_{2}=\frac{x}{y-x}$
$\Rightarrow \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\mathrm{y}}{\mathrm{x}}(\mathrm{y}-\mathrm{x})^{2}$
Q. 2 (A,C)
Q. 3 (A,B)
$\log \frac{k_{c}}{k_{p}}=\log \frac{1}{(R T)}$
$\Rightarrow \mathrm{k}_{\mathrm{p}}=\mathrm{k}_{\mathrm{c}}(\mathrm{RT}) \quad \Rightarrow \Delta \mathrm{n}=1$
Q. 4 (A,B,C)

From given reactions.
(i) $=-($ iii $) ; \quad \frac{1}{2}($ i $)=-($ iv $)$;
$\frac{1}{2}($ iii $)=-($ ii)
Q. $5 \quad(\mathrm{C}, \mathrm{D})$
Q. 6 (B,C)
Q. 7 (A,C,D)
Q. 8 (C,D)

Addition of solids have no effect on equilibrium and temperature favours endothermic direction while increasing pressure will shift equilibrium in backward direction as $\Delta \mathrm{n}_{\mathrm{g}}$ is +ve.
Q. 9 (A,C)

Given :

$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3} 9+\mathrm{CO}_{2}(\mathrm{~g})$
$(2 \mathrm{x})^{2}(\mathrm{x})=2.92 \times 10^{-5}$
$\mathrm{x}^{3}=\frac{2.92}{4} \times 10^{-5}$
$\mathrm{P}_{\text {total }}=3 \mathrm{x}=0.0582$
Q. 10 (C,D)
Q. 11 (B,C)

Exothermic \Rightarrow low temp
\therefore forward reaction favoured
High temp backward
Q. 12 (C,D)

As given :
$\mathrm{HgO}(\mathrm{s})+4 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{HgI}_{4}^{2-}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$,

$$
\mathrm{K}=\frac{\left[\mathrm{HgI}_{4}^{2-}\right]\left[\mathrm{OH}^{-}\right]^{2}}{\left[\mathrm{I}^{-}\right]^{4}}
$$

as, $\begin{aligned} & \mathrm{OH}^{\ominus} \uparrow \mathrm{Hg}^{2-} \downarrow \\ & \mathrm{H}_{2} \mathrm{O}(\ell) \uparrow \mathrm{OH}^{\Theta} \uparrow\end{aligned}$
Q. 13 (B,D)
$\Delta \mathrm{G}=\Delta \mathrm{H}^{\circ}+\Delta \mathrm{ST}$
from (1) \& (2)
$\ell \mathrm{nk}=\frac{\Delta \mathrm{H}^{\mathrm{O}}}{\mathrm{RT}}+\frac{\Delta \mathrm{S}}{\mathrm{R}}$
slope of the line equal to $\Delta H^{\circ} / R$
Q. 14 (A,C)

As given :
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\ell)$
At $\mathrm{O}^{\circ} \mathrm{C}$ density of $\mathrm{H}_{2} \mathrm{O}(\mathrm{s})<\mathrm{H}_{2} \mathrm{O}(\ell)$
As $\mathrm{P} \downarrow \& \mathrm{~V} \uparrow$
\therefore formation of more $\mathrm{H}_{2} \mathrm{O}$ (s)
and increase in melting point of $\mathrm{H}_{2} \mathrm{O}$ (s)

Q. 15 (C,D)

Introduction of inet gas at constant Pressure will increase $\uparrow \&$ volume \downarrow the Pressure of gases of equilibrium
\Rightarrow equilibrium shifted forward
Q. 16 (C,D)
$\mathrm{NaNO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{NaNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}>0$ endothermic
High temperature
\therefore forward reaction favoured
1000 pressure
High pressure \rightarrow Reverse reaction
Q. 17 (A,C,D)
(A) As reaction is endothermic therefore it will go in the forward direction hence moles of CaO will increase.
(B) With the increase or decrease of volume particle pressure of the gases will remain same.
(C) Due to the addition of inert gas at constant pressure reaction will proceed in the direct in which more number of gaseous moles are formed.
Q. 18 (B,C,D)

According to $\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{PCl}_{3}(\mathrm{~g})} \times \mathrm{P}_{\mathrm{Cl}_{2}(\mathrm{~g})}}{\mathrm{P}_{\mathrm{PCl}_{5}(\mathrm{~g})}}$
$=\frac{\left(\mathrm{n}_{\mathrm{PCl}_{3}(\mathrm{~g})}\right)_{\text {eq. }} \times\left(\mathrm{n}_{\mathrm{Cl}_{2}(\mathrm{~g})}\right)_{\text {eq. }}}{\mathrm{V} \times\left(\mathrm{n}_{\mathrm{PCl}_{5}(\mathrm{~g})}\right)_{\mathrm{eq}} .}$
and on adding inert gas at constant pressure effect on equilibrium will be similar to as if volume of container has been increased.
Q. 19 (A,D)

For endothermic reaction, $\Delta \mathrm{H}^{\circ}$ is positive so, if $\mathrm{T}_{2}>\mathrm{T}_{1}$ then $K_{2}>K_{1}$.
For exothermic reaction, $\Delta \mathrm{H}^{\circ}$ is negative so, if $\mathrm{T}_{2}>\mathrm{T}_{1}$ then $K_{2}<K_{1}$.
Q. 20 (C,D)

As few moles of $\mathrm{CO}(\mathrm{g})$ are introduced into the vessel
second equilibrium shifts backward, decreasing the concentration of Cl_{2}. So, first equilibrium will go forward.
Q. 21 (A,B,C,D,E)
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
(A) For changing pressure volume has to be changed, though number of moles of $\mathrm{HI}(\mathrm{g})$ do not get changed but its concentration will get changed.
(B) Temperature change will change K_{P} and hence concentration.
(C) Volume change will change concentration, not the number of moles.
(D) Same equilibrium will be attained from either direction.
(E) Catalyst does not change equilibrium concentrations.
Q. 22 (B,D)
(A) Backward shifting will take place.
(B) Forward shifting will take place.
(C) Backward shifting will take place.
(D) Forward shifting will take place.
Q. 23 (A,B,C,D)

Addition of inert gas at constant volume has no effect on equilibrium concentrations.
Q. 24 (A,C)

Addition of solids have no effect on equilibrium and temperature favours endothermic direction while increasing pressure will shift equilibrium in backward direction as $\Delta \mathrm{n}_{\mathrm{g}}$ is +ve .
Q. 25 (A,B,C)

Addition of inert gas at constant volume has no effect on equilibrium concentrations.
Q. 26 (B,C,D)

$$
\text { From } \mathrm{K}_{\mathrm{P}}=\left(\mathrm{P}_{\mathrm{NH}_{3}(\mathrm{~g})}\right)^{2}\left(\mathrm{P}_{\mathrm{CO}_{2}(\mathrm{~g})}\right)
$$

and since reaction is exothermic.

Comprehension \# 1

Q. 27 (B)

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})
$$

$$
\mathrm{t}=00.1 \quad \mathrm{t}=\mathrm{t}_{\mathrm{eq} .} \quad 0.1-\mathrm{x} \quad 2 \mathrm{x}
$$

$$
\frac{(0.1-x) 44+(2 x \times 28)}{0.1+x}=36
$$

$$
\Rightarrow x=\frac{1}{30}
$$

Total moles $=0.1+\frac{1}{30}=\frac{2}{15}$

Q. 28 (A)

Moles of CO_{2} at eq. $=0.1-\mathrm{x}=\frac{1}{15}$

Moles of CO at eq. $=2 x=\frac{2}{30}=\frac{1}{15}$
$P_{\mathrm{CO}_{2}}=\frac{0.082 \times 900}{15 \times 0.82}=6 \mathrm{~atm}$
$P_{C O}=\frac{1}{15} \times \frac{0.082}{0.82} \times 900=6 \mathrm{~atm}$
$\therefore \mathrm{K}_{\mathrm{P}}=\frac{6 \times 6}{6}=6 \mathrm{~atm}$
Q. 29 (B)
$\mathrm{n}_{\mathrm{C}}=0.1$
$\begin{array}{lccc} & C(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) & \rightleftharpoons & 2 \mathrm{CO}(\mathrm{g}) \\ \mathrm{t}=0 & 0.1 & \mathrm{n} \\ \mathrm{t}=\mathrm{t}_{\text {eq. }} & - & \mathrm{n}-0.1 & 0.2 \\ \mathrm{P}_{\mathrm{CO}}= & \frac{0.2 \times 0.082 \times 900}{0.82}=18 \mathrm{~atm}\end{array}$
$\mathrm{K}_{\mathrm{P}}=6=\frac{(18)^{2}}{\mathrm{P}_{\mathrm{CO}_{2}}} ; \mathrm{P}_{\mathrm{CO}_{2}}=54 \mathrm{~atm}$
$\therefore \frac{(\mathrm{n}-0.1)(0.082)(900)}{0.82}=54$
$\mathrm{n}=0.7$

Comprehension \#2

Q. 30 (B)

As we know, $K_{P}=K_{C}(R T)^{\Delta n_{g}}$

$$
\begin{aligned}
& \Delta \mathrm{n}_{\mathrm{g}}=2-2 \Rightarrow 0 \\
\Rightarrow \quad & 49 \times(.0802 \times 700)^{0} \\
\mathrm{~K}_{\mathrm{p}} & \Rightarrow 49
\end{aligned}
$$

Q. 31	(C) $\mathrm{H}_{2}+$ 0.5	I_{2}	
	0.5		
	$0.5-\mathrm{x}$	$0.5-\mathrm{x}$	
		2 H	

Total number of moles
$0.5-\mathrm{x}+0.5-\mathrm{x}+2 \mathrm{x}=1$
$\mathrm{P}=\frac{1 \times 0.0821 \times 700}{7}$
$\mathrm{P}=8.21 \mathrm{~atm}$
Q. 32 (B)
from above question
$\mathrm{K}_{\mathrm{C}}=\frac{4 \mathrm{x}^{2}}{(0.5-x)^{2}}$

$$
\begin{gathered}
\frac{\left(\frac{2 x}{7}\right)^{2}}{\left(\frac{0.5-x}{7}\right)\left(\frac{0.5-x}{7}\right)}=49 \\
\frac{2 x}{0.5-x}=7 \Rightarrow x=0.388
\end{gathered}
$$

remaining $\mathrm{I}_{2}=0.5-0.388=0.112$

Q. 33 (A)

At equilibrium mole of $\mathrm{HI}=2 \mathrm{x}$
$=2 \times 0.388$

$$
\mathrm{P}_{\mathrm{HI}}=\frac{(2 \times 0.388) \times 0.082 \times 700}{7}
$$

$=6.38$

$$
\mathrm{P}_{\mathrm{HI}}<\mathrm{P}_{\text {toal }}
$$

$\mathrm{P}_{\mathrm{HI}}<8.21$ only case $\mathrm{P}_{\mathrm{HI}}=6.385$

Comprehension \#3

Q. 34 (D)

Solublity of gas is favourable at high pressure and this process is exothermic hence solubility will be more at low temperature.

Q. 35 (C)

Since density of gold decreases after melting therefore it is favourable at low pressure and high temperature.

Q. 36 (A,B)

Number of moles will remain unchanged but due to decreased volume pressure will get increased and also the concentrations.

Comprehension \#4

Q. 37 (A)

Best drying agent reduces the moisture more effectively means reduces the
$\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}$ to the minimum
for $\mathrm{SrCl}_{2} 2 \mathrm{H}_{2} \mathrm{O} \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=\left(\mathrm{K}_{\mathrm{P}}\right)^{1 / 4}$
$\Rightarrow\left(5 \times 10^{-12}\right)^{1 / 4}=1.49 \times 10^{-3}$
for $\mathrm{Na}_{2} \mathrm{HPO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=\left(2.43 \times 10^{-13}\right)^{1 / 5}=3 \times 10^{-3}$
for $\mathrm{Na}_{2} \mathrm{SO}_{4}$
$\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=\left(1.02 \times 10^{-27}\right)^{1 / 10}=2 \times 10^{-3}$
Q. 38 (B)
$\mathrm{Na}_{2} \mathrm{SO}_{4} 10 \mathrm{H}_{2} \mathrm{O}$ will release moisture
when $\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}<2 \times 10^{-3}$
V. $\mathrm{P}_{\mathrm{H}_{2}} \mathrm{O}=6 \times 10^{-3} \mathrm{~atm}$

Relative humidity $=\frac{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}}{\mathrm{VP}_{\mathrm{H}_{2} \mathrm{O}}}=\frac{2 \times 10^{-3}}{6 \times 10^{-3}}=33.33 \%$
if relative humidity < 33.33%
$\Rightarrow \mathrm{PH}_{2} \mathrm{O}<2 \times 10^{-3}$
it will releases the moles
Q. 39 (A)
above 33.33%
from previous question

Comprehension\#5

Q. 40 (B)

$$
\text { Slope }=\frac{-\Delta H^{\circ}}{2.3 R}=-\frac{230}{2.3 \times 2}=-50
$$

Q. 41 (B)

Using equation, $\log \mathrm{K}=-\frac{\Delta \mathrm{H}^{o}}{2.3 R T}+\frac{\Delta \mathrm{S}^{o}}{2.3 R}$
Q. 42 (B)

Using equation, $\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\Delta \mathrm{H}^{o}}{2.30 \mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)$

Comprehension \# 6

Q. 43 (C)

Given as :

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

initally
At equilbrium $\begin{array}{lll}1 & & 3 \\ 1-x / 2 & 3-x / 2 & x\end{array}$ addition of 2 mole $^{\mathrm{H}_{2}}$,

$$
\begin{aligned}
& 3-\frac{x}{2}-\frac{x}{2} \quad 3-\frac{x}{2}-\frac{x}{2} \quad x+x \\
& \Rightarrow \quad 3-x \quad 3-x \quad 2 x \\
& \Rightarrow \quad 2 x=3 \Rightarrow x=\frac{(x)^{2}}{\left(1-\frac{x}{2}\right)\left(3-\frac{x}{2}\right)}=\frac{(2 x)^{2}}{(3-x)(3-x)} \\
& \Rightarrow \quad x=1.5
\end{aligned}
$$

Q. 44 (C)
$K_{C}=\frac{(2 x)^{2}}{(3-x)(3-x)}=\frac{9}{\left(\frac{9}{4}\right)}=4$
$\mathrm{K}_{\mathrm{C}}=\mathrm{K}_{\mathrm{p}}$ because $\Delta \mathrm{n}_{\mathrm{g}}=0$
$\mathrm{K}_{\mathrm{C}}=\mathrm{K}_{\mathrm{P}}=4$
Q. 45 (B)

Given :

$$
\begin{aligned}
& 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \\
& 2 \\
& \text { conc. }=\frac{2-2 \mathrm{x}}{5} \frac{1.5-\mathrm{x}}{5} \frac{2 \mathrm{x}}{5} \\
& \mathrm{SO}_{2} \longrightarrow \mathrm{SO}_{3}\left(\mathrm{nf} \text { of } \mathrm{SO}_{2}=2\right) \\
& \text { m.eq of } \mathrm{KMnO}_{4}={\text { m.eq of } \mathrm{SO}_{2}}^{0.4 \times 5=(2.2 \mathrm{x}) \times 2}
\end{aligned}
$$

$2=2(1-x) \times 2$
$\Rightarrow 1-x=1 / 2 \Rightarrow x=\frac{1}{2}$
$\left[\mathrm{SO}_{2}\right]=\frac{1}{5} ;\left[\mathrm{O}_{2}\right]=\frac{1}{5}$
$\left[\mathrm{SO}_{3}\right]=\frac{1}{5}$
$K_{C}=5$
Q. 46 (A) q, s; (B) p ;(C) p ;(D) r
(A) $\Delta \mathrm{n}_{\mathrm{g}}=2-4=-2$ and $\mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
(B) $\Delta \mathrm{n}_{\mathrm{g}}=2-1=1$ and $\mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
(C) $\Delta \mathrm{n}_{\mathrm{g}}=2-1=1$ and $\mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
(D) K_{P} is not defined.
Q. $47 \quad \mathrm{~A} \rightarrow \mathrm{p} ; \mathrm{B} \rightarrow \mathrm{q} ; \mathrm{C} \rightarrow \mathrm{s} ; \mathrm{D} \rightarrow \mathrm{r}$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
Q. $48(\mathrm{~A}-\mathrm{r}) ;(\mathrm{B}-\mathrm{r}) ;(\mathrm{C}-\mathrm{q}) ;(\mathrm{D}-\mathrm{p})$
(A) $\Delta \mathrm{n}_{\mathrm{g}}$ is +ve so as P is increased, backward shifting will take place. Total pressure even after shifting will remain same.
(B) $\Delta \mathrm{n}_{\mathrm{g}}$ is -ve so as V is increased, backward shifting will take place. But $\mathrm{P}_{\text {final }}<\mathrm{P}_{\text {initial }}$.
(C) No change but $\mathrm{P}_{\text {final }}<\mathrm{P}_{\text {initial }}$ as volume has increased.
(D) Forward shifting will take place and $\mathrm{P}_{\text {final }}<\mathrm{P}_{\text {initial }}$.
Q. 49 A-p,t ; B-q, r; C-q, s
(A) $\Delta \mathrm{n}_{\mathrm{g}}=0$
(B) $\Delta \mathrm{n}_{\mathrm{g}}=-1$
(C) $\Delta \mathrm{n}_{\mathrm{g}}=2$
Q. $50 \quad(\mathrm{~A}) \rightarrow \mathrm{P}, \mathrm{R}, \mathrm{S} ;(\mathrm{B}) \rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S} ;(\mathrm{C}) \rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S} ;(\mathrm{D}) \rightarrow \mathrm{Q}$

As we know
$\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}=(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
$\mathrm{K}_{\mathrm{P}} \& \mathrm{~K}_{\mathrm{C}}$ ratio depend on $\mathrm{T} \& \Delta \mathrm{n}_{\mathrm{g}}$
if we take $\mathrm{T}=0^{\circ} \mathrm{C}$ than
(RT) >1
(A) if $\Delta \mathrm{n}_{\mathrm{g}}<0 \frac{\mathrm{~K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}<1 \Rightarrow \mathrm{~K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{C}}$
if $\Delta \mathrm{n}_{\mathrm{g}}>0 \frac{\mathrm{~K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}>1 \Rightarrow \mathrm{KP}>\mathrm{K}_{\mathrm{C}}$
if we take $\mathrm{T}=0^{\circ} \mathrm{C}$ than
P, R, S
(B) Addition of inert gas at const pressure means pressure of equilibrium gases will decrease equilibrium shift where mole of gases are high due to the conc of reactant means equilibrium shifted to forward
$\Rightarrow \Delta \mathrm{n}_{\mathrm{g}}>0$
But pressure is constant \Rightarrow volume \uparrow
$\Rightarrow \quad$ conc. of reactants \downarrow
P, Q, R, S
(C) $\mathrm{K}_{\mathrm{P}}^{\circ}$ always dimensonless $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$
(D) $\mathrm{T} \downarrow$ forward shift $\Rightarrow \Delta \mathrm{H}>0$

NUMERICAL VALUE BASED

Q. 1 [2]

Q. 2 [7]
Q. 3 [3]
Q. 4 [2]

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{(1.59)^{2}}{1.26}=2.00
$$

Q. 5 [1]

$$
\mathrm{K}_{\mathrm{p}}=\frac{{ }^{\mathrm{n}} \mathrm{Cl}_{2} \times{ }^{\mathrm{n}} \mathrm{PCl}_{3}}{{ }^{\mathrm{n}} \mathrm{PCl}_{5}} \times\left[\frac{\mathrm{P}}{\Sigma \mathrm{n}}\right]^{1}
$$

$$
=2 \times \frac{2}{2} \times\left[\frac{3}{6}\right]^{1}
$$

1 atm
Q. 6 [3]
Q. 7 [0]
$\Delta G^{0}=-2.303 R T \log K p$
If $\mathrm{Kp}=1, \Delta \mathrm{G}^{0}=0$
Q. 8 [2]
Q. 9 [2]

Molar conc. of $\mathrm{H}_{2} \mathrm{~S}=\frac{0.1}{0.4} \mathrm{~mol} \mathrm{~L}^{-1}=0.25 \mathrm{~mol} \mathrm{~L}^{-1}$
Suppose degree of dissociation of $\mathrm{H} 2 \mathrm{~S}=\alpha$ then
$2 \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}_{2}+\mathrm{S}_{2}$
0.25 M
$0.25(1-\alpha), 0.25 \alpha, \frac{0.25}{2} \alpha$
$=0.125 \alpha=0.125 \alpha$
$\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}}$
$10^{-6}=\frac{(0.25 \alpha)^{2}(0.125 \alpha)}{[0.25(1-2)]^{2}}$
Neglecting in comparison to 1 we get
$10^{-6}=\frac{(0.25 \alpha)^{2}(0.125 \alpha)}{(0.25)^{2}}=0.02$
$\%$ age dissociation $=0.02 \times 100=2 \%$

Q. 10 [7]

As NaCl is salt of strong base + strong acid, it does not undergo salt hydrolysis

KVPY

PREVIOUS YEAR'S

Q. 1
 (A)

Reaction quotient
$\mathrm{Q}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{0.4 \times 0.4}{0.1 \times 0.2}$
$\mathrm{Q}=8$
Q < K
So reaction will proceeds in forward direction.
Hence amount of HI increases
Q. 2 (B)

Reaction move in forward direction
Q. 3 (B)
$2 \mathrm{P}(\mathrm{g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{PCl}_{3}(\mathrm{~g}) \quad \mathrm{K}_{1}$
$2 \mathrm{PCl}_{3}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{PCl}_{5}(\mathrm{~g}) \quad \mathrm{K}_{2}^{2}$
Net reaction : $2 \mathrm{P}(\mathrm{g})+5 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{PCl}_{5}(\mathrm{~g}) \mathrm{K}=\mathrm{K}_{1} \mathrm{~K}_{2}{ }^{2}$
Q. 4 (D)
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]^{3}}$

$$
\begin{aligned}
& 4=\frac{0.5}{\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]^{3}} \quad\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]^{3}=\frac{0.5}{4} \\
& {\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]^{3}=\frac{1}{8}} \\
& {\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=\frac{1}{2}} \\
& {\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=0.5}
\end{aligned}
$$

Q. $5 \quad$ (A)

$$
\begin{array}{lll}
& \mathrm{A} & \rightleftharpoons \mathrm{nB} \\
\mathrm{t}=0 & 0.06 & 0 \\
\mathrm{t}=\mathrm{t} & 0.03 & 0.06 \\
\alpha \mathrm{c}=0.03 \\
\mathrm{n} \alpha \mathrm{c}=0.06 & \\
\mathrm{n}=2
\end{array}
$$

$$
\mathrm{K}_{\mathrm{c}}=\frac{(0.06)^{2}}{0.03}=\frac{(0.06)^{2}}{0.03}=0.12
$$

Q. 6 (B)

$$
\begin{aligned}
& \mathrm{K}_{1}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{O}_{2}\right]^{\frac{1}{2}}\left[\mathrm{SO}_{2}\right]} \\
& \mathrm{K}_{2}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}}
\end{aligned}
$$

Hence : $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}^{2}}$

$$
\mathrm{K}_{1}^{2}=\frac{1}{\mathrm{~K}_{2}}
$$

Q. 7 (C)

$$
\Delta G^{\mathrm{o}}=-2.303 \mathrm{RT} \log _{10} \mathrm{~K}
$$

$$
\log \mathrm{K}=-\frac{\Delta \mathrm{G}^{\circ}}{2.303 \mathrm{RT}}
$$

So lower value of $\Delta \mathrm{G}^{\circ}$ higher will be $\log \mathrm{K}$
$\mathrm{F} \rightleftharpoons \mathrm{G}, \Delta \mathrm{G}^{\mathrm{o}}=-150 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (lowest)
Q. 8 (C)
$\begin{array}{ll}\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI} ; & \left.\mathrm{K}_{\mathrm{c}}=50\right] \\ \mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} ; & \mathrm{K}_{\mathrm{c}}=1000\end{array}$

$$
\mathrm{N}_{2}+6 \mathrm{HI} \rightleftharpoons 2 \mathrm{NH}_{3}+3 \mathrm{I}_{2} ; \quad \mathrm{K}_{\mathrm{c}}=\frac{1000}{(50)^{3}}
$$

Q. 9 (A)

$\mathrm{X} \rightleftharpoons 2 \mathrm{Y}$	k_{1}	$\mathrm{Z} \rightleftharpoons \mathrm{P}+\mathrm{Q} \mathrm{k}_{2}$		
1	0	1	0	0
$1-\alpha$	$2-\alpha$		$1-\alpha$	α

$$
\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\frac{(2 \alpha)^{2}}{(1+\alpha)}}{\frac{\alpha^{2}}{(1+\alpha)}}=\frac{4 \alpha^{2}}{\alpha^{2}}=4
$$

Q. 10 (D)

According to Lechatelier principal on increasing volume of closed vessel equilibrium will shift towards right.
Q. 11 (A)
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$\Delta_{\mathrm{r}} \mathrm{G}^{0}=\Delta_{\mathrm{t}} \mathrm{G}^{0}(\mathrm{CaO})+\Delta_{\mathrm{t}} \mathrm{G}^{0}\left(\mathrm{CO}_{2}\right)-\mathrm{D}_{\mathrm{f}} \mathrm{G}^{0}\left(\mathrm{CaCO}_{3}\right)$
$=-603.501-394.389+1128.79=130.9 \mathrm{kJmol}^{-1}$
$\Delta_{\mathrm{r}} \mathrm{G}^{0}=-2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{p}}$
$\log \mathrm{K}_{\mathrm{p}}=\frac{130.9 \times 1000}{-2.303 \times 298 \times 8.314}=-22.94$
$\mathrm{K}_{\mathrm{p}}=\operatorname{antilog}(-22.94)=1.13 \times 10^{-23}$
Q. 12 (D)

- Equilibrium constant is dependent on temperature.
- Equilibrium constant do not tell us about the rate of reaction.
- At equilibrium, the forward and backward reactions do not stop but they have same rate.

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 [7]

$\mathrm{AB}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g})$	$\mathrm{Pi}=\frac{1 \times 1}{12} \times \frac{300}{25}$				
1	-	-			
$1-\mathrm{x}$	x	$=1$	\quad	$1+2 \mathrm{x}=19$	$\mathrm{KP}=\frac{\mathrm{P}_{\mathrm{A}} \times\left(\mathrm{P}_{\mathrm{B}}\right)^{2}}{\mathrm{P}_{\mathrm{AB}_{2}}}$
:---	:---				
$2 \mathrm{x}=0.9$	$\mathrm{KP}=\frac{9 \times 9 \times 9 \times 20}{20 \times 100 \times 11}$				
$\mathrm{x}=0.45$					

$\mathrm{K}_{\mathrm{P}}=\frac{9 \times 9 \times 9}{100 \times 11}=0.6627 \times 10^{-1}$
Q. 2 (5)
$\mathrm{Cl}_{2} \rightleftharpoons 2 \mathrm{Cl}$
Moles $\mathrm{x} \quad \mathrm{x}$
at eq^{n}
P.P. $\quad \frac{1}{2} \quad \frac{1}{2}$
$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{Cl}}^{2}}{\mathrm{P}_{\mathrm{CL}_{2}}}$
$\mathrm{P}=\frac{\left(\frac{1}{2}\right)^{2}}{\frac{1}{2}}=\frac{1}{2}=0.5$
$=5 \times 10^{-1}$
$\mathrm{x}=5$
Q. 3 (2)

Using formula
$\Delta \mathrm{rG}^{0}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{p}}$
$25200=-2.3 \times 8.3 \times 400 \log \left(\mathrm{~K}_{\mathrm{p}}\right)$
$\mathrm{K}_{\mathrm{p}}=10^{-3.3}=10^{-3} \times 0.501$
$=5.01 \times 10^{-4} \mathrm{Bar}^{-1}$
$=5.01 \times 10^{-9} \mathrm{~Pa}^{-1}$
$=\frac{\mathrm{K}_{\mathrm{C}}}{8.3 \times 400}$
$\mathrm{K}_{\mathrm{c}}=1.66 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{mole}$
$=1.66 \times 10^{-2} \mathrm{~L} / \mathrm{mol}$
Ans $=2$
Q. 4 (354)
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) ; \Delta \mathrm{ng}=2-1=1$
Now, $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}} .(\mathrm{RT}) \Delta \mathrm{ng}$
or, $600.1=20.4 \times(0.0831 \times \mathrm{T})^{1}$
$\therefore \mathrm{T}=353.99 \mathrm{~K}=354 \mathrm{~K}$
Q. 5 (20)

$$
\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{~K}_{\mathrm{eq}}
$$

Given $\Delta \mathrm{G}^{\circ}=-9.478 \mathrm{KJ} / \mathrm{mole}$
$\mathrm{T}=495 \mathrm{~K} \quad \mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1}$.
So $-9.478 \times 10^{3}=-495 \times 8.314 \times 1 \mathrm{n} \mathrm{K}_{\text {eq }}$
$\ln K_{\text {eq }}=2.303$

$$
=\ln 10
$$

So $K_{\text {eq }}=10$
Now $A(g)-B(g)$
$\mathrm{t}=0 \quad 22 \quad 0$
$\mathrm{t}=\mathrm{t} \quad 22-\mathrm{x} \quad \mathrm{x}$
$\mathrm{K}_{\text {eq }}=\frac{[\mathrm{Z}}{\overline{\mathrm{T}}} \frac{\mathrm{x}}{\mathrm{C}}=\frac{\mathrm{x}}{22-\mathrm{x}}=10$
or $\mathrm{x}=20$
So millmoles of $\mathrm{B}=20$
Q. 6 (875)
Q. $7 \quad$ (16)
Q. 8 (1400)
Q. 10 (25)
Q. 11 (2)
Q. 12 (172)
Q. 13 [182]
Q. 14 (6)

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (A,B,D)
(A) $\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}=\mathrm{C}_{\mathrm{P}(\mathrm{xxn})}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$ and C_{p} depends on temperature. Hence enthalpy also depends on temperature.
(B) $\mathrm{CaCO}_{3(s)} \rightleftharpoons \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(g)} \mathrm{Kp}=\left(\mathrm{P}_{\mathrm{CO}_{2}}\right)_{\text {atequibibrium }}$

For a given reaction.
$\mathrm{K}_{\text {eq. }}$ depends only on temperature.
(C) $\mathrm{K}_{\text {eq }}$ depends only on temperature.
(D) Enthalpy of reaction is independent of the catalyst.

Catalyst generaly changes activation energy.

Paragraph for Question no. 2 to 3

Q. 2 (B)

$$
\begin{gathered}
X_{2}(g) \rightleftharpoons 2 \times(g) \\
1-\frac{\beta}{2} \quad \beta
\end{gathered}
$$

$K_{P}=\frac{\left[\frac{\beta}{\left(1+\frac{\beta}{2}\right)}\right]^{2} \times 2^{2}}{\frac{1-\frac{\beta}{2}}{1+\frac{\beta}{2}} \times 2}=\frac{\beta^{2}}{1-\frac{\beta^{2}}{4}} \times 2$
$K_{P}=\frac{8 \beta^{2}}{4-\beta^{2}}$
Q. 3 (C)
$\Delta G^{0}=(+) v e$
$\therefore-R T \ln K_{P}=\Delta G^{0}=(+) v e$
$K_{P}<1$
Also β cant be 0.7 otherwise K_{P} will have to be (+)ve
Q. 4 (8.92 or 8.93)
$\mathrm{Fe}_{(\mathrm{aq})}^{+2}+\mathrm{S}_{(\mathrm{aq})}^{-2} \rightleftharpoons \mathrm{FES}(\mathrm{s})$
$\begin{aligned} & 0.03 \mathrm{M} \\ & (0.03-\mathrm{x})(0.1-\mathrm{x})\end{aligned}$
$\begin{aligned} & \simeq \mathrm{y} \quad \simeq 0.1 \mathrm{M}\end{aligned}$
$\begin{aligned} & \mathrm{K}_{\mathrm{c}} \gg 10^{3} \Rightarrow 0.03-\mathrm{x} \simeq 0 \simeq \mathrm{y} \\ & \quad \Rightarrow \mathrm{x}=0.03\end{aligned}$
$\mathrm{~K}_{\mathrm{c}}=1.6 \times 10^{17}=\frac{1}{\mathrm{y} \times 0.07}$
$y=\frac{10^{-17}}{1.6 \times 0.07}=8.928 \times 10^{-17}=Y \times 10^{-17}$ $y=8.93$
Q. 5 [0.25]
$\mathrm{K}_{\text {eq. }}=\frac{[\mathrm{B}]}{[\mathrm{A}]}$
$\mathrm{K}_{1000}=\frac{10}{1}=10$ and $\mathrm{K}_{2000}=\frac{100}{1}=100$

Now, $\frac{\Delta \mathrm{G}_{1000}^{0}}{\Delta \mathrm{G}_{2000}^{0}}=\frac{\left(-\mathrm{RT} \ell \mathrm{nk}_{\mathrm{eq}}\right)_{1000}}{\left(-\mathrm{RT} \ell \mathrm{nk}_{\text {eq }}\right)_{2000}}=\frac{1000 \times \ell \mathrm{n} 10}{2000 \times \ell \mathrm{n} 100}$
$=0.25$

Ionic Equilibrium

ELEMENTRY

Q. 1 (4)

Q. 2 (3)

Because it is a electron pair acceptor it's central atom have a vacant d-orbital

Q. 3 (2)

The basic character of hydride decreases down the group.
Q. 4 (4)
Q. 5 (1)
BF_{3} is a Lewis acid because ' B ' has incomplete octet.
Q. 6 (2)

According to Bronsted principle HNO_{3} is acid they give H^{+}in aqueous solution and form NO_{3}^{-}.
Q. 7 (4)

$$
10^{-3} \mathrm{~N} \mathrm{KOH} \text { will give }\left[\mathrm{OH}^{-}\right]=10^{-2} \mathrm{M}
$$

$$
\mathrm{pOH}=2
$$

$\because \mathrm{pH}+\mathrm{pOH}=14, \mathrm{pH}=14-2=12$
Q. 8 (2)

For pure water $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right], \therefore \mathrm{K}_{\mathrm{w}}=10^{-12} \mathrm{~s}$
Q. 9 (1)

Because pure water has a 7 pH .
Q. 10 (3)
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}$
Q. 11 (3)

It is a conjugate base of the strong acid.
Q. 12 (1)

Conjugate acid is obtained from the base by gain of H^{+}.
Q. 13 (4)

HCl is a strong acid its conjugate base means Cl^{-}is a weak base
Q. 14 (4)

$$
\underset{\text { Coniugate acid }}{\mathrm{H}_{2} \mathrm{PO}_{-}^{-}} \rightarrow \mathrm{H}^{+}+\underset{\text { Coniugate base }}{\mathrm{HPO}_{2}^{2-}}
$$

Q. 15 (3) $\mathrm{pH}=4$ means; $\left[\mathrm{H}^{+}\right]=10^{-4} \mathrm{~mol}$
Q. 16 (3)

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \text { ionized in two step }
$$

Q. 17 (2)
$\left[\mathrm{H}^{+}\right]=2 \times 10^{-2} \mathrm{M}$
$\because \mathrm{pH}=-\log \left[2 \times 10^{-2}\right]$;
$\mathrm{pH}=1.7$ i.e. in between 1 and 2.
Q. 18 (2)
Q. 19 (3) $0.01 \mathrm{M} \mathrm{HCl}=10^{-2} \mathrm{M}\left[\mathrm{H}^{+}\right], \mathrm{pH}=2$.
Q. 20 (2)

Because the degree of dissociation is inversely proportional to the concentration of the electrolyte
Q. 21 (1)

$$
\begin{aligned}
& \mathrm{K}=\frac{\alpha^{2} \mathrm{C}}{1-\alpha} ; \alpha=\frac{0.01}{100} \approx 1 \quad \therefore \mathrm{~K}=\alpha^{2} \mathrm{C}=\left[\frac{0.01}{100}\right]^{2} \times 1 \\
& =1 \times 10^{-8} .
\end{aligned}
$$

Q. 22 (3)
Q. 23 (1)

In weak electrolyte the degree of dissociation is very small. So it increases with increasing dilution
Q. 24 (4)

In aqueous solution following euilibrium is exist.

$$
\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}
$$

While adding the dilute HCl solution
$\left(\mathrm{HCl} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Cl}^{-}\right)$equilibrium is shift to the left side in $\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}$
Q. 25 (1)
$\left[\mathrm{H}^{+}\right]=\mathrm{c} \times \alpha=0.1 \times \frac{30}{100}=0.03 \mathrm{M}$

Q. 26 (1)

$\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{Kc}}=\sqrt{10^{-5} \times 0.1}=10^{-3}, \mathrm{pH}=3$
Q. 27 (4)

Salt of a strong base with a weak acid
Q. 28 (3)
(3) $\mathrm{Fe}{ }^{3+}$ ions are hydrolysed to develop acidic nature
Q. 29 (3)
0.001 M of NaOH means $\left[\mathrm{OH}^{-}\right]=.001$
$=10^{-3} \mathrm{M} \Rightarrow \mathrm{pOH}=3$
$\mathrm{pH}+\mathrm{pOH}=14 \Rightarrow \mathrm{pH}=14-3=11$
Q. 30 (1)

$$
\mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \mathrm{I}!\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HCl}
$$

Q. 31 (2)

It contains replacable H atom.
Q. 32 (3)
$\mathrm{CH}_{3} \mathrm{COONH}_{4}$ is a simple buffer and called salt of weak acid.
Q. 33 (4)
$\mathrm{NH}_{4} \mathrm{OH}$ is a weak acid and $\mathrm{NH}_{4} \mathrm{Cl}$ is a strong base salt.
Q. 34 (1)

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}=-\log 2 \times 10^{-5}+\log \frac{10 \times 1}{50 \times 2}=4 .
$$

Q. 35 (2)

$$
\mathrm{CaF}_{2} \rightleftharpoons \mathrm{Ca}_{(\mathrm{S})}^{++}+\underset{(2 \mathrm{~S})^{2}}{2 \mathrm{~F}^{-}} ; \mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}^{3}
$$

Q. 36 (2)

Due to common ion effect.
Q. 37 (4) $\mathrm{K}_{\text {sp }}$ for $\mathrm{CaF}_{2}=4 \mathrm{~s}^{3}=4 \times\left[2 \times 10^{-4}\right]^{3}=3.2 \times 10^{-11}$.

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (4)

Q. 2 (4)
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq}) \longrightarrow \mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})$

Acid-1 base-2 base-1 acid-2
Q. 3 (1)
$\mathrm{NH}_{2}^{-}+\mathrm{H}^{+} \longrightarrow$
Q. 4 (3)

Amphiprotic : can accept and
Release H^{+}
Only $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$\& HCO_{3}^{-}
Q. 5 (4)

Fact based
Q. 6 (1)
$\left[\mathrm{OH}^{-}\right]=$in pure water.
So as temperature increases K_{w} decreases $\left[\mathrm{OH}^{-}\right]$ decreases.
Q. 7 (2)
$\left[\mathrm{H}^{+}\right]==5.5 \times 10^{-2} \mathrm{M}$.
$\therefore \mathrm{pH}=2-0.74=\mathbf{1 . 2 6}$
Q. 8 (3)

Factual.
Q. 9 (2)

In this solution, source of OH^{-}is water
$\therefore \quad \mathrm{C} \alpha=\left[\mathrm{OH}^{-}\right]$
$\alpha==1.8 \times 10^{-11} \mathrm{M}$
$\%$ ionisation $=\mathbf{1 . 8} \times \mathbf{1 0}^{-\mathbf{9}} \mathbf{M}$
Q. 10 (4)
$\left[\mathrm{H}^{+}\right]_{1}=10^{-2} ;\left[\mathrm{H}^{+}\right]_{2}=10^{-6}=10^{4}$
Q. 11 (2)
(1) At $25^{\circ} \mathrm{C},\left[\mathrm{H}^{+}\right]$in a solution of $10^{-8} \mathrm{M} \mathrm{HCl}>10^{-7}$ M.
(2) $\left[\mathrm{H}^{+}\right]=10^{-8} \mathrm{M}$.
(3) $\left[\mathrm{OH}^{-}\right]=4 \times 10^{-6} \mathrm{M} \Rightarrow\left[\mathrm{H}^{+}\right]=2.5 \times 10^{-9} \mathrm{M}$.

Q. 28 (2)
\% Hydrolysis does not depend on the conc. in case
of "Weak acid + weak base : Salt"
Q. 29 (1)

Weak acid + Strong base : Salt
$\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{OHCN}+\mathrm{OH}^{-}$
$-\mathrm{xXX}$
X can be neglected
$\Rightarrow \mathrm{X}=3.1 \times 10^{-4}$
$\%$ Hydrolysis $=\times 100$
$=2.48 \%$
Q. 30 (4)

Salt of weak acid \& strong
Base
$\mathrm{CH}_{3} \mathrm{COONa} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}$
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{OCH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
Basic Solution
Q. 31 (4)

Factual
Q. 32 (1)
$\mathrm{h}=.03 \mathrm{C}=0.1 \mathrm{M}$
$\mathrm{K}_{\mathrm{h}}=\mathrm{Ch}^{2}=9 \times 10^{-5}$
$\underset{\times 10^{-10}}{\mathrm{~K}_{\mathrm{h}}^{\mathrm{h}}}=9 \times 10^{-5} \quad \mathrm{~K}_{\mathrm{a}}==1.11 \times 10^{-10} 1$
Q. 33 (2)

Solution of $\mathrm{HCl} \& \mathrm{NH}_{4} \mathrm{Cl}$ will be acidic, solution of NaCl neutral whereas solution of NaCN will be basic.
Q. 34 (1)
$\mathrm{NaCl}+\mathrm{HCl}:$ Not the Buffer and Solution is acidic due to HCl .
$\Rightarrow \mathrm{pH}<7$.
Q. 35 (4)
m. equivalent of $\mathrm{KOH}=8$
m. equivalent of $\mathrm{HCOOH}=16$

Remaining m. eq. $(\mathrm{HCOOH})=8$
Formed m. eq. $(\mathrm{HCOOK})=8$
\Rightarrow Acidic Buffer
$\mathrm{pH}=\mathrm{pKa}=4-\log 2$
$=3.7$
$\mathrm{pOH}=10.3$
Q. 36 (2)
$\underset{\substack{\mathrm{t}=0}}{\mathrm{CH}_{3} \mathrm{COOH}}+\mathrm{OH}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{t}=\mathrm{eq}-\mathrm{-} 20$
So, $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]==0.1 \mathrm{M}$
$\mathrm{pH}=7+{ }^{3} \mathrm{pK}+\log \mathrm{C}=7+2.37+\log 10^{-1}=7+$ $2.37-0.5=8.87$
Q. 37 (3)
$\mathrm{pH}=8.7 \Rightarrow \mathrm{pOH}=5.3$
Basic Buffer
$\Rightarrow \mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log$
$\Rightarrow=4$
If volume of salt $=\mathrm{V} \mathrm{ml}$
$\Rightarrow=4$
Q. 38 (4)

Factual
Q. 39 (3)
$\mathrm{K}_{\mathrm{a}}=5 \times 10^{-10} \mathrm{pK}_{\mathrm{a}}=10 \log 5=9.3$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{b}}+\log$
$9=9.3+\log -0.3=\log$
$0.3=\log =2 \mathrm{~V}_{\mathrm{ml}}=2 \mathrm{ml}$
Q. 40 (1)
$\mathrm{pH}=\mathrm{pKa}+\log$
$\Rightarrow 5.5=5+\log$
$\Rightarrow=3.16$
Suppose x m. mole NaOH was added
Acid + Base \longrightarrow Salt
10x 10
$10-\mathrm{x} 010+\mathrm{x}$
$\Rightarrow=3.16 \Rightarrow x=5.2 \mathrm{~m} . \mathrm{mole}$
$\Rightarrow \mathrm{NaoH}$ (mass) $=\times 40=0.208 \mathrm{~g}$

Q. 41 (1)

$\mathrm{HCOOH}+\mathrm{KOH} \mathrm{HCOOK}+\mathrm{H}_{2} \mathrm{O}$
milimole 20-10
$10-\quad 10$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log =3.74+\log \mathrm{pH}=3.74$
Q. 42 (2)

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}$	$\mathrm{CH}_{3} \mathrm{COONa}+\underset{2}{\mathrm{H}_{2} \mathrm{O}}$
time $\mathrm{t}=0$	40 mmole
time $\mathrm{t}=\mathrm{t}$	20 mmole
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \Rightarrow \mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \Rightarrow\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-}$	
${ }^{5} \mathrm{M}$	20 mmole

Q. 51 (3)

Q. 43 (3)

Mole of NaOH is required for 1 lit solution $=\mathrm{x}$
$\therefore \quad$ Mole of NaOH is required for 100 ml of solution $=0.1 \mathrm{x}$
Now, $0.1 \mathrm{x}=1 \times \mathrm{V}, \mathrm{V}=0.1 \mathrm{xlt}=100 \mathrm{x} \mathrm{ml}$.
Q. 44 (4)
$\mathrm{A}_{2} \mathrm{X}_{3} \quad 2 \mathrm{~A}^{3+}+3 \mathrm{X}^{2-}$
$2 \mathrm{y}^{2-} \quad \mathrm{y}$
$\mathrm{K}_{\mathrm{sp}}=(2 \mathrm{y})^{2}(3 \mathrm{y})^{3}$
$K_{\text {sp }}^{\text {sp }}=108 \mathrm{y}^{5}$
Q. 45 (4)
$\mathrm{HgSO}_{4} \mathrm{Hg}^{2+}+\mathrm{SO}_{4}{ }^{2-} \mathrm{SS}$
$\mathrm{Ksp}=\mathrm{S}^{2}$
$\mathrm{Ksp}=\mathrm{S}^{2}$
$\Rightarrow 6.4 \times 10^{-5}=S^{2}$
$\Rightarrow \mathrm{S}=8 \times 10^{-3} \mathrm{~mole} / \mathrm{L}$
$\mathrm{S}=8 \times 10^{-3} \times 10^{3} \mathrm{~mole} / \mathrm{m}^{3}$
$\Rightarrow \mathrm{S}=8 \mathrm{~mole} / \mathrm{m}^{3}$

Q. 46 (4)

Calculate the solubility 's' for each option, Higher the value of 's' Higher the solubility.

Q. 47 (2)

For ppt $\mathrm{Q}_{\mathrm{sp}}>\mathrm{K}_{\mathrm{sp}}$ $\mathrm{CaF}_{2} \longrightarrow \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-}$
$\mathrm{Q}_{\mathrm{sp}}=\left(\mathrm{Ca}^{2+}\right)\left(\mathrm{F}^{-}\right)^{2}$
(1) ${ }^{\mathrm{sp}} \mathrm{Q}_{\mathrm{sp}}=12.5 \times 10^{-14}$
(2) $Q^{\text {sp }}=12.5 \times 10^{-10}$
(3) $Q^{s p}=12.5 \times 10^{-13}$
(4) $Q_{\text {sp }}^{\text {sp }}=12.5 \times 10^{-15}$

Only ${ }^{\text {sp }} 2$) option will get precipitate.
Q. 48 (4)

WA Vs SB end point > 7 Phenolphthalein
Q. 49 (1)

Same as problem Number $=28$
Q. 50 (3)

$$
\begin{aligned}
& \mathrm{Q}_{\text {sp }}(\mathrm{AgBr})=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right] \\
& \Rightarrow \mathrm{Q}_{\text {sp }}= \\
& =2 \times 10^{-16} \\
& \mathrm{Q}_{\text {sp }}<\mathrm{K}_{\text {sp }} \\
& \Rightarrow \mathrm{No} \text { precipitation } \\
& {\left[\mathrm{Ag}^{+}\right]==10^{-7} \mathrm{M}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \Rightarrow 6=5+\log \Rightarrow 1=\log \\
& =10
\end{aligned}
$$

Q. 52 (1)

$$
\mathrm{MX}_{4} \mathrm{M}^{4+}+4 \mathrm{X}^{-} \mathrm{S} 4 \mathrm{~S}
$$

$$
\mathrm{K}_{\mathrm{sp}} \stackrel{4}{=}[\mathrm{S}][4 \mathrm{~S}]^{4}
$$

$$
\Rightarrow \mathrm{K}_{\mathrm{sp}}=256 \mathrm{~S}^{5} \Rightarrow \mathrm{~S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{256}\right)^{1 / 5}
$$

Q. 53 (4)

$$
\begin{aligned}
& (1) \mathrm{Li}_{3} \mathrm{Na}_{3}\left(\mathrm{AlF}_{6}\right)_{2} 3 \mathrm{Li}^{+}+3 \mathrm{Na}^{+}+2\left[\mathrm{AlF}_{6}\right]^{3-} \\
& 3 \mathrm{~s} \\
& \mathrm{~K}_{\mathrm{sp}}=(3 \mathrm{~s})^{3}(3 \mathrm{~s})^{3}(2 \mathrm{~s})^{2}=2916 \mathrm{~s}^{8} .
\end{aligned}
$$

Q. 54 (2)

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}} \text { of } \mathrm{Mg}(\mathrm{OH})_{2}=2.56 \times 10^{-13} \\
& \quad 4 \mathrm{~s}_{1}^{3}=2.56 \times 10^{-13} \mathrm{~s}_{1}=4 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}} \text { of } \mathrm{Al}(\mathrm{OH})^{3}=\mathrm{K}_{\mathrm{sp}}=4.32 \times 10^{-34} \\
& \quad 27 \mathrm{~s}_{2}^{4}=4.32 \times 10^{-34} \mathrm{~s}_{2}=2 \times 10^{-9} \mathrm{M}==2 \times 10^{4}
\end{aligned}
$$

Q. 55 (3)

$$
\begin{array}{cl}
\mathrm{NaF} & \mathrm{Na}^{+}+\mathrm{F}^{-} \\
0.10 .1 & 0.1 \\
\mathrm{CaF}_{2} \quad \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-} \\
(2 \mathrm{x}+0.1) & 0.1^{2} \\
\mathrm{~K}_{\text {sp }}=\mathrm{x}(0.1)^{2}=3.4 \times 10^{-11} \mathrm{x}=3.4 \times 10^{-9}
\end{array}
$$

Q. 56 (1)

$$
\begin{aligned}
& \mathrm{Ag}_{2} \mathrm{CO}_{3} 2 \mathrm{Ag}^{+}+\mathrm{CO}_{3}^{2-}
\end{aligned}
$$

$$
\text { Here }\left[\mathrm{Ag}^{+}\right]=2 \mathrm{~s}=2 \times 10^{-4} \mathrm{M} \Rightarrow \mathrm{~s}=1 \times 10^{-4}
$$

$$
\therefore \quad \mathrm{K}_{\mathrm{SP}}=4 \mathrm{~s}^{3}=4\left(1 \times 10^{-4}\right)^{3}=4 \times 10^{-12}
$$

Q. 57 (3)

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3} \quad 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}^{2-} \\
& 2 \times 0.010 .01 \\
& \mathrm{Ag}_{2} \mathrm{CO}_{3} \quad 2 \mathrm{Ag}^{+} \quad+\mathrm{CO}_{3}^{2-} \\
& 2 \mathrm{x}(\mathrm{x}+0.01) 0.01 \\
& \mathrm{~K}_{\mathrm{sp}}=4 \mathrm{x}^{2}(0.01) \\
& \mathrm{K}_{\mathrm{sp}}=4 \mathrm{~s}^{3}=4 \times 10^{-12}=4 \mathrm{x}^{2}(0.01) \mathrm{x}=10^{-5}
\end{aligned}
$$

Q. 58 (3)

Let K_{sp} of $\mathrm{AgCI}=\mathrm{x}$
(1) solubility of AgCl in pure water $=\mathrm{s}_{1}=(2)$ solubility of AgCl in $0.01 \mathrm{M} \mathrm{CaCl}_{2}=\mathrm{s}_{2}=$
(3) solubility of AgCl in $0.01 \mathrm{M} \mathrm{NaCl}=\mathrm{s}_{3}=$ (4) solubility of AgCl in $0.05 \mathrm{M} \mathrm{AgNO}_{3}=\mathrm{s}_{4}=$
So $\mathrm{s}_{1}>\mathrm{s}_{3}>\mathrm{s}_{2}>\mathrm{s}_{4}$
Q. 59 (1)
$\mathrm{K}_{\mathrm{SP}}\left(\mathrm{Ba} \mathrm{CrO}_{4}\right)=2.4 \times 10^{-10} \mathrm{M}^{2}$
$\left[\mathrm{CrO}_{4}^{-2}\right]=6 \times 10^{-4} \mathrm{~K}_{\mathrm{SP}}\left(\mathrm{BaCrO}_{4}\right)=\left[\mathrm{Ba}^{+2}\right]\left[\mathrm{CrO}_{4}^{-2}\right]$
2.4×10^{-10}
$\Rightarrow\left[\mathrm{Ba}^{+}\right] \times 6 \times 10^{-4}=2.4 \times 10^{-10}$
$\left[\mathrm{Ba}^{+}\right]=4 \times 10^{-7} \mathrm{M}$ Ans.
Q. 60 (1)
$\mathrm{pH}=4 \Rightarrow\left[\mathrm{H}^{+}\right]=10^{-4} \mathrm{M} \Rightarrow\left[\mathrm{OH}^{-}\right]=10^{-10} \mathrm{M}$
$\mathrm{Al}(\mathrm{OH})_{3} \mathrm{Al}^{+3}+3 \mathrm{OH}^{-}$
$\mathrm{K} \quad\left(\mathrm{Al}(\mathrm{OH})_{3}\right)=\left[\mathrm{Al}^{+3}\right]\left[\mathrm{OH}^{-}\right]^{3}$
$\left[\mathrm{Al}^{\text {sp }}{ }^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}=1 \times 10^{-33}$
$\left[\mathrm{Al}^{3+}\right]\left(10^{-10}\right)^{3}=1 \times 10^{-33} \Rightarrow\left[\mathrm{Al}^{+3}\right]=10^{-3} \mathrm{M}$
Q. 61 (4)

Higher the concentration of H^{+}, higher is the solubility of $\mathrm{Fe}(\mathrm{OH})_{3}$.
solubility of $\mathrm{Fe}(\mathrm{OH})_{3}$ is maximum in $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
Q. 62 (4)
$\mathrm{MnS}(\mathrm{s}) \mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) ; \mathrm{S}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \mathrm{H}_{2} \mathrm{~S}$ (aq)
Q. 63 (1)
order of solubility : Complex formation > Pure water > Common ion effect.
AgBr form complex $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$in NH_{3} so solubility is maximum in $\mathrm{NH}_{3}(\mathrm{aq})$.
Q. 64 (1)
pH of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ solution can be derived by :
$\mathrm{H}_{2} \mathrm{~S} \mathrm{H}^{+}+\mathrm{HS}^{-} ; \mathrm{K}_{1}=1 \times 10^{-7}$
$\therefore\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha=\mathrm{C}====10^{-4} \therefore \mathrm{pH}=4$

Q. 65 (3)

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~A} \mathrm{H}^{+}+\mathrm{HA}^{-} \\
& 10^{-5}= \\
& \mathrm{HA}^{-} \mathrm{H}^{+}+\mathrm{A}^{2-} \\
& 5 \times 10^{-10}= \\
& \mathrm{H}_{2} \mathrm{~A} 2 \mathrm{H}^{+}+\mathrm{A}^{-} \\
& \mathrm{K}_{\text {overall }}^{2}=5 \times 10^{-10} \times 10^{-5} \\
& \quad=5 \times 10^{-15}
\end{aligned}
$$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (D)

$$
\log \frac{\left(\mathrm{K}_{\mathrm{w}}\right)_{50^{\circ} \mathrm{C}}}{\left(\mathrm{~K}_{\mathrm{w}}\right)_{25^{\circ} \mathrm{C}}}=\frac{\Delta \mathrm{H}}{2.303}\left[-\frac{1}{323}+\frac{1}{298}\right]
$$

$$
\begin{aligned}
\Rightarrow & \log \frac{5.474}{1.08}=\frac{\Delta \mathrm{H}}{2.303 \times 8.314} \times \frac{25}{323 \times 290} \\
& (\Delta \mathrm{H})_{\text {ionization }} \text { of } \mathrm{H}_{2} \mathrm{O}=51.963 \mathrm{KJ} / \mathrm{mol} \\
\therefore & (\Delta \mathrm{H})_{\text {Neutralization }}=-\mathbf{5 1 . 9 6 3} \mathbf{~ K J} / \mathbf{m o l}
\end{aligned}
$$

Q. 2 (C)
$2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{OH}^{-}\right]^{2}}{\left[\mathrm{I}^{-}\right]^{2}}$
For $\mathrm{H}_{2}(\mathrm{~s})$
$\mathrm{PV}=\mathrm{nRT}$,
$\mathrm{P}=\mathrm{CRT}$
$C=\frac{P}{R T}=\frac{0.6}{0.082 \times 298}=0.0245$
From $\mathrm{eq}^{\mathrm{n}}(1)$

$$
\left[\mathrm{OH}^{-}\right]^{2}=\frac{1.2 \times 10^{-2} \times(0.1)^{2}}{0.0245}
$$

$$
\left[\mathrm{OH}^{-}\right]=0.0699
$$

$$
\left[\mathrm{OH}^{-}\right]^{2}=\frac{1.2 \times 10^{-2} \times(0.1)^{2}}{0.6}=\mathbf{1 . 6 5 0}
$$

Q. 3 (D)
$\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Fe}(\mathrm{OH})^{2+}+\mathrm{H}^{+}$
conc at eq ${ }^{\mathrm{n}} \frac{1-0.05}{\mathrm{~V}} \frac{0.05}{\mathrm{~V}} \frac{0.05}{\mathrm{~V}} \frac{0.05}{\mathrm{~V}}$
we have $\mathrm{K}_{\mathrm{eq}}=6.5 \times 10^{-3}=\frac{(0.05 / \mathrm{V})^{2}}{(1-0.05 / \mathrm{V})}$
$\Rightarrow \mathrm{V}=\frac{100}{19 \times 13}$
$\therefore \quad\left(\mathrm{H}^{+}\right)=\frac{0.05}{\mathrm{~V}}=0.1235$
$\mathrm{P}_{\mathrm{H}}=-\log \left(\mathrm{H}^{+}\right)=\mathbf{0 . 9 0 8}$
Q. 4 (B)

$$
\begin{aligned}
\mathrm{HCl} \longrightarrow & \mathrm{H}^{+}+\mathrm{Cl}^{-} \\
& (\mathrm{x}+\mathrm{x}) \quad(\mathrm{x}) \\
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons & \begin{array}{l}
\mathrm{H}^{+}+\mathrm{OH}^{-} \\
(\mathrm{x}+\mathrm{x}) \quad(\mathrm{x})
\end{array}
\end{aligned}
$$

Ionic product $=\mathrm{K}_{\mathrm{w}}=(2 \mathrm{x})(\mathrm{x})=10^{-14}$
$\Rightarrow 2 \mathrm{x}^{2}=10^{-14} \Rightarrow \mathrm{x}=\sqrt{50} \times 10^{-8}$
Q. 5 (A)

Order of basic strength $\mathrm{O}^{2-}>\mathrm{S}^{2-}>\mathrm{Se}^{2-}>\mathrm{Te}^{2-}$
Q. 6 (A)
pH of amphioprotic salts and weak acid-weak base salt is independent of its concentration.
Q. 7 (C)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}^{+} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$
$\mathrm{t}=05 \quad 2.5 \mathrm{t}_{\text {eq }} 2.5-2.5$
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{a}}=14-8=6$
$\therefore \mathrm{pK}_{\mathrm{a}}=6$
Now for the solution of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right]=0.01 \mathrm{M}$
$\mathrm{pH}=7-\frac{1}{2} \mathrm{pK}_{\mathrm{a}}-\frac{1}{2} \log \mathrm{C}=7-\frac{6}{2}-\frac{1}{2} \log (0.01)=5$
Q. 8 (A)
$\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{Na}^{+}+\mathrm{PO}_{4}^{3-}$
$\mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{OH}^{-}$
$K_{3}^{\prime}=\frac{K_{w}}{K_{3}}=\frac{10^{-14}}{4.5 \times 10^{-13}}$
$0.1\left(1-\alpha_{1}\right) 0.1 \alpha_{1}(1-\alpha) 0.1 \alpha_{1}+0.1 \alpha_{1} \alpha_{2}+0.1 \alpha_{1} \alpha_{2} \alpha_{3}$
$\mathrm{HPO}_{4}^{3-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{2-}+\mathrm{OH}^{-}$
$\mathrm{K}_{2}^{\prime}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{2}}=\frac{10^{-14}}{6.3 \times 10^{-8}}$
$0.1\left(1-\alpha_{2}\right) 0.1 \alpha_{1} \alpha_{2}\left(1-\alpha_{3}\right) 0.1 \alpha_{1} \alpha_{2}+0.1 \alpha_{1}+0.1 \alpha_{1} \alpha_{2} \alpha_{3}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{OH}^{-}$
$\mathrm{K}_{1}^{\prime}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{1}}=\frac{10^{-14}}{7.1 \times 10^{-3}}$
$0.1 \alpha_{1} \alpha_{2}\left(1-\alpha_{3}\right) \quad 0.1 \alpha_{1} \alpha_{2} \alpha_{3} 0.1 \alpha_{1} \alpha_{2} \alpha_{3}+0.1 \alpha_{1}+$ $0.1 \alpha_{1} \alpha_{2}$
Now $1-\alpha_{2} \approx 1$

$$
1-\alpha_{3} \approx 1
$$

or $\left[\mathrm{OH}^{-}\right] \simeq 0.1 \alpha_{1}$
We have $\mathrm{K}_{3}^{\prime}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{PO}_{4}^{3-}\right]}=\frac{0.1 \alpha_{1} \times 0.1 \alpha_{1}}{0.1\left(1-\alpha_{1}\right)}$
$=0.022$

$$
\begin{aligned}
& 0.1 \alpha_{1}^{2}=0.022-0.022 \alpha_{1} \\
& 0.1 \alpha_{1}^{2}+0.022 \alpha_{1}-0.022=0 \\
& \alpha_{1}=3.73 \times 10^{-2} \mathrm{M}
\end{aligned}
$$

$\left[\mathrm{OH}^{-}\right]=0.1 \alpha_{1}=3.73 \times 10^{-2} \mathrm{M}$
$\mathrm{K}_{2}^{\prime}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]}$
$\mathrm{As},\left[\mathrm{OH}^{-}\right] \approx\left[\mathrm{HPO}_{4}{ }^{2-}\right]$

We have, $\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=\mathrm{K}_{2}{ }^{1}=1.587 \times 10^{-7} \mathrm{M}$
So, $\mathrm{K}_{1}^{\prime}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}$
$\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=\frac{10^{-14}}{7.1 \times 10^{-3}} \times \frac{1.587 \times 10^{-7}}{3.73 \times 10^{-2}}=\mathbf{6} \times 10^{-18} \mathbf{M}$
Q. 9 (C)
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}$
$\Rightarrow 4.5=4.2+\log \left(\frac{V_{2}}{V_{1}}\right) \Rightarrow \frac{V_{2}}{V_{1}}=2$
$\therefore \quad$ volume of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$ required $=\mathrm{V}_{2}=200 \mathrm{ml}$ volume of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ required $=\mathrm{V}_{1}=\mathbf{1 0 0} \mathbf{~ m l}$.
Q. 10 (B)

For the buffer solution of $\mathrm{NH}_{3} \& \mathrm{NH}_{4}^{+}$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} \Rightarrow 8.26=9.26+\log
$$

$\frac{(500 \times 0.01)}{\text { m. moles of } \mathrm{NH}_{4}^{+}}$
$\Rightarrow \mathrm{m}$. moles of $\mathrm{NH}_{4}^{+}=50 \therefore$ moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ required $=\mathbf{0 . 0 2 5}$.
Q. 11 (A)
$\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{HCI} \longrightarrow \mathrm{NaCI}+\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{t}=020 \mathrm{~m}$ eq.
20 meq. $\mathrm{t}_{\text {eq. }}-20 \mathrm{meq}$.

$$
\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{20}{200}=0.1 \mathrm{M}
$$

$\mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{a}}-\log \mathrm{C}\right]=\frac{1}{2}[5-\log 2+1]$
$=\frac{1}{2}[6-\log 2]=3-\log \sqrt{2}$

Q. 12 (C)

meq. of acid $=$ meq of base $\Rightarrow 20 \times M=20 \times 0.2=4$

$$
\text { Molarity of } \mathrm{HA}=0.2 \mathrm{M}
$$

$$
\mathrm{HA}+\mathrm{OH} \longrightarrow \mathrm{~A}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

$5 \quad 2 \mathrm{~m}$. mole
3- $\quad 2 \mathrm{~m}$. mole
$\therefore \quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \Rightarrow 5.8=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{2}{3}\right) \Rightarrow \mathrm{pK}_{\mathrm{a}}$ $=5.98$
Q. 13 (D)

Difference in pH between $\frac{1}{3} \& \frac{2}{3}$ stages of neutralisation $=\left[\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{2 / 3}{1 / 3}\right)\right]-$ $\left[\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{1 / 3}{2 / 3}\right)\right]=2 \log 2$.

Q. 14 (B)

m. moles of HA taken $=27 \times 0.1=2.7$

$$
\mathrm{HA}+\mathrm{OH}^{-} \longrightarrow \mathrm{A}-+\mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{t}=0$ 2.71.2
$\mathrm{t}_{\mathrm{eq}} \quad 1.5-1.2$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \quad \Rightarrow 5=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{1.2}{1.5}\right)$
$=\mathrm{pK}_{\mathrm{a}}+\log \frac{4}{5}$
$\therefore \quad \mathrm{pK}_{\mathrm{a}}=5.1 \Rightarrow \mathrm{~K}_{\mathrm{a}}=\mathbf{8} \times \mathbf{1 0}^{-6}$.
Q. 15 (B)
m . moles of $\mathrm{HCl}=0.1 \times 20=2$
m. moles of $\mathrm{CH}_{3} \mathrm{COOH}=0.1 \times 20=2$

After titration of HCl by NaOH
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{2}{40}=\frac{1}{20} \mathrm{M}$
$\therefore \mathrm{pH}=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{a}}-\log \mathrm{C}\right)$
$=\frac{1}{2}\left[5-\log 2-\log \left(\frac{1}{20}\right)\right]=3$.
Q. 16 (B)
$\mathrm{BOH}+\mathrm{HCl} \rightarrow \mathrm{BCI}+\mathrm{H}_{2} \mathrm{O}$
Initially $40.16 \times \mathrm{V} 0$
no. of milli moles
After R×n 004
$\Rightarrow 0.16 \times V=4$
\therefore Concentration of $\mathrm{BCl}=\frac{4}{25+40}$
$=\frac{4}{65} 6.15 \times 10^{-2} \mathrm{M}$
$\therefore \mathrm{p}_{\mathrm{H}}=\frac{1}{2}\left[\mathrm{pk}_{2}-\mathrm{pk}_{\mathrm{b}}-\log \mathrm{C}\right]=5.23$
$\Rightarrow \mathrm{pk}_{\mathrm{b}}=4.75$
Now,
$\mathrm{BCl}+\mathrm{NaOH} \rightarrow \mathrm{BOH}+\mathrm{NaCl}$
Initially 41.800
no. of milli moles
After R×n 4-1.801.81.8
$=2,2=0=1.8$
The mixture is buffer of BOH and BCl

$$
\begin{aligned}
\therefore & \mathrm{P}_{\mathrm{OH}}=\mathrm{pk}_{\mathrm{b}}+\log \frac{[\mathrm{BCl}]}{[\mathrm{BOH}]} \\
& =4.75+\log \frac{2.2}{1.8} \\
& \mathrm{P}_{\text {OH }}=\mathbf{9 . 1 6}
\end{aligned}
$$

Q. 17 (B)
(A) pH of NaHCO_{3} is independent of dilution.
(C) pH of buffer solution is approximately ramains constant with dilution.
(D) pH of salt of WA \& WB is independent of dilution.
Q. 18 (C)

$$
\begin{aligned}
\mathrm{CaF}_{2}(\mathrm{~s}) & \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-} \mathrm{s} 2 \mathrm{~s} \\
& 4 \mathrm{~s}^{3}
\end{aligned}=\mathrm{K}_{\mathrm{sp}}=4 \times 10^{-11} \Rightarrow \mathrm{~s}=2.15 \times 10^{-4} \mathrm{M}
$$

So, amount of F^{-}in 20000 lt of water
$=2 \mathrm{~s} \times 20000=\mathbf{8 . 6} \mathbf{~ m o l}$.
Q. 19 (C)
$\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3} \geq \mathrm{K}_{\text {sp }}$
$\left[\mathrm{OH}^{-}\right] \geq 3.7 \Rightarrow \mathrm{pOH} \leq 3.7 \Rightarrow \mathrm{pH} \geq \mathbf{1 0 . 3}$.
Q. 20 (B)
$\mathrm{Ca}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$
$\mathrm{t}=0 \frac{1.48}{74}=0.02$
$00 \mathrm{t}_{\mathrm{eq}} 00.020 .04$
so, $\mathrm{pOH}=2-\log 4=1.4$
so $\mathrm{pH}=12.6$

Q. 21 (D)

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
Initially
no. of milli moles 20.10
After r \times n 1.9000 .1
$\left(\mathrm{P}_{\mathrm{H}}\right)_{1}=\mathrm{PKa}+\log \frac{\text { [Salt }]}{\text { [Acid] }]}$
$=\mathrm{PKa}+\log \frac{0.1}{1.9}$
Similarly $\left(P_{H}\right)_{2}=P K a+\log \frac{1.9}{0.1}$

$$
=\mathrm{p}_{\mathrm{H}}=\left(\mathrm{P}_{\mathrm{H}}\right)_{2}-\left(\mathrm{P}_{\mathrm{H}}\right)=\log \frac{(1.9)^{2}}{(0.1)^{2}}=\mathbf{2 . 5 5 8}
$$

Q. 22 (A)
$\mathrm{K}_{\text {sp }}(\mathrm{AgCl})=2.8 \times 10^{-10}$
$\mathrm{AgCl} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$
$2.8 \times 10^{-10}=(\mathrm{s}+0.1) \mathrm{s}$
$\mathrm{s}=2.8 \times 10^{-9}$
Q. 23 (A)
$\mathrm{S}^{2-}+\mathrm{Zn}^{2+} \longrightarrow \mathrm{ZnS}(\mathrm{s})$
m.moles 0.40 .20 .2 -so in solution,
$\left[S^{2-}\right]=\frac{0.2}{20}=0.01 \mathrm{M}$
$\therefore \quad\left[\mathrm{Zn}^{2+}\right]=\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{S}^{2-}\right]}=\frac{4 \times 10^{-24}}{0.01}=4 \times 10^{-22} \mathrm{M}$
$\therefore \quad$ mass of Zn^{2+} remain unprecipitated in 20 ml of solution $=\frac{4 \times 10^{-24}}{1000} \times 20 \times 65=5.2 \times \mathbf{1 0}^{-22} \mathbf{g m}$.
Q. 24 (A)
m.moles of Ag^{+}in 100 ml of saturated solution of AgCl
$=\sqrt{\mathrm{K}_{\mathrm{sp}}} \times 100=1.4 \times 10^{-3}$
Now
$\mathrm{Ag}^{+}+\mathrm{SCN}^{-} \longrightarrow \mathrm{AgSCN}(\mathrm{s})$
m.moles of $\mathrm{SCN}^{-}=\mathrm{m}$. moles of Ag^{+}
$1 \times 10^{-5} \times \mathrm{V}=1.4 \times 10^{-3} \Rightarrow$ volume $=140 \mathbf{~ m L}$.
Q. 25 (A)
$\mathrm{Cd}^{2+}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{CdS} \downarrow+2 \mathrm{H}^{+}$
m.moles 0.10.2

Total m.moles of H^{+}in solution after the reaction
$=0.2+0.8=1$
$\therefore \quad\left[\mathrm{H}^{+}\right]=\frac{1}{100}=0.01 \mathrm{M} \Rightarrow \mathrm{pH}=\mathbf{2}$.
Q. 26 (A)

```
\(2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \longrightarrow \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})\)
;
\[
\mathrm{K}=10^{29}
\]
```

moles of $\mathrm{H}_{2} \mathrm{~S}$ dissolved $=1.5 \times 10^{-4}$
$\therefore \quad$ moles of Ag^{+}precipitated $=3 \times 10^{-4}$

$$
\therefore \quad \mathrm{K}_{\text {sp }}\left(\mathrm{AgBrO}_{3}\right)=\left(\frac{3 \times 10^{-4}}{0.25}\right)\left(\frac{3 \times 10^{-4}}{0.25}\right)=1.44 \times 10^{-}
$$ 6

Q. 27 (B)
Q. 28 (A)

$$
\begin{aligned}
& \mathrm{BOH}+\mathrm{HCl} \rightarrow \mathrm{BCl}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{a}-\frac{\mathrm{a}}{4} \\
& =24 \times \frac{3}{4}=18 \mathrm{meq} \quad \text { Now, } \frac{\mathrm{a}}{4}=6 \mathrm{~m} \mathrm{eq} \\
& \mathrm{P}_{\mathrm{OH}}+\log \frac{[\mathrm{salt}]}{[\mathrm{basic}]} \mathrm{a}=24 \mathrm{~m} \mathrm{eq} \\
& =\mathrm{PK}_{\mathrm{b}}+\log \frac{4}{4 \times 3}=14-9.24=4.76 \\
& \Rightarrow \mathrm{PK}=5.237 \\
& \mathrm{Now}, \mathrm{BCl}+\mathrm{NaOH} \rightarrow \mathrm{BOH}+\mathrm{NaCl} \\
& 6-6 \\
& =0 \\
& \mathrm{Total} \mathrm{BOH}=6+18_{4}=24 \mathrm{~m} \mathrm{eq} \\
& \therefore(\mathrm{BOH})=\frac{24}{50} \mathrm{M} \\
& \mathrm{P}_{\mathrm{OH}}=\frac{1}{2}[\mathrm{Pk}-666 \\
& \left.\therefore \mathrm{P}_{\mathrm{b}}-\operatorname{logC}\right] \\
& \therefore=\frac{1}{2}\left[5.237-\log \frac{24}{50}\right]=2.774 \\
& \mathrm{P}_{\mathrm{H}}=11.22
\end{aligned}
$$

Q. 29 (C)

If x be the concentration of AgCl in the solution, then $\left[\mathrm{Cl}^{-}\right]=\mathrm{x}$

From the $\mathrm{K}_{\text {sp }}$ for AgCl , we derive

$$
\left[\mathrm{Ag}^{+}\right]=\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{Cl}^{-}\right]}=\frac{1.7 \times 10^{-10}}{\mathrm{x}}
$$

If we answer that the majority of the dissolved Ag^{+} goes into solution as $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$then $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$then $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}=\mathrm{x}$
Since two molecules of NH_{3} are required for every $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$ion formed, we have $\left[\mathrm{NH}_{3}\right]=0.2-2 \mathrm{x}$
$\therefore K_{\text {inst }}=\frac{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]}$
$=\frac{\left(\frac{1.7 \times 10^{-10}}{x}\right)(0.2-2 x)^{2}}{x}=\mathbf{6} \times 10^{-8}$
$\therefore \quad x=\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]=9.6 \times 10^{-3} \mathrm{M}$, which is the solubility of AgCl in $0.2 \mathrm{M} \mathrm{NH}_{3}$

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (B, D)
$\mathrm{pK}_{\mathrm{a}}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)=-1.74=\mathrm{pK}_{\mathrm{b}}$ of OH^{-}
$\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=14$ only for conjugate acid base pair.
$\alpha=1.8 \times 10^{-9}$ or $1.8 \times 10^{-7} \%$ for $\mathrm{H}_{2} \mathrm{O}$.
Q. 2 (A, B, C)
$\mathrm{pK}_{\mathrm{w}}=-\log \mathrm{K}_{\mathrm{w}}=-\log 1 \times 10^{-12}=12$.
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-12}$.
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$\Rightarrow\left[\mathrm{H}^{+}\right]^{2}=10^{-12} ;\left[\mathrm{H}^{+}\right]=10^{-6} ; \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-$ $\log 10^{-6}=6$.
$\mathrm{H}_{2} \mathrm{O}$ is neutral because $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$at 373 K even when $\mathrm{pH}=6$.
(D) is not correct at 373 K . Water cannot become acidic.
Q. 3 (B,C)
(A) pH of $10^{-8} \mathrm{~m} \mathrm{sol}$. of HCl is 6.97
(consider the H^{+}from $\mathrm{H}_{2} \mathrm{O}$ also)
(B) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \xrightarrow{-\mathrm{H}^{+}} \mathrm{HPO}_{4}{ }^{2-}$
(C) $\mathrm{Kw}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$

On \uparrow temp $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
both $\uparrow \Rightarrow \mathrm{Kw} \uparrow$
(D) $\mathrm{HA}+\mathrm{NaOH} \rightarrow \mathrm{NaA}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{C} \mathrm{C} / 2 \quad \mathrm{C}-\mathrm{C} / 2$
$\mathrm{pH}=\mathrm{pKa}+\log \frac{\text { salt }}{\text { acid }}$
Q. $4(\mathrm{~B}, \mathrm{C})$
(B) is correct because $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Base }]}$ for acidic buffer.
If [Salt] increases, pH of acidic buffer will increase.

$$
\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \text { for basic buffer. }
$$

If [Salt] increases, pOH will increase, pH will decrease as $\mathrm{pH}=14-\mathrm{pOH}$.
Therefore (C) is correct but (D) is wrong.
(A) is not correct $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { [Salt] }}{\text { [Acid] }}$

If [Salt] increase, pH will increase.
Q. 5 (B, C, D)
(B), (C) and (D) are the mixtures of conjugate acidbase pairs.
Q. 6 (A, B)
(A) is buffer because it contains weak acid and its salt and they will also show common ion effect.
(B) is also a buffer because it contains a weak acid and its salt. They will not show common ion effect.
(C) is not buffer solution because they contains strong acids and its salt. They will not show common ion effect.
(D) is not a buffer solution because it contains strong acids and its salt. They will not show common ion effect.
Q. 7 (A, D)
(A) $\left[\mathrm{H}^{+}\right]=10^{-2}$ and $\left[\mathrm{OH}^{-}\right]=10^{-2}$

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}
$$

This leads complete neutralisation
so, $\mathrm{pH}=7=\frac{2+12}{2}$
(D) $\left[\mathrm{H}^{+}\right]=10^{-5}$ and $\left[\mathrm{OH}^{-}\right]=10^{-5}$
$\left[\mathrm{H}^{+}\right]+\left[\mathrm{OH}^{-}\right] \longrightarrow \mathrm{H}_{2} \mathrm{O}$
This leads complete neutralisation
so, $\mathrm{pH}=7=\frac{5+9}{2}$
Q. 8 (A,B,C)
$\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$
0.09-0.09 0.090.09
$\mathrm{Cl}_{2} \mathrm{HCCOOH} \rightleftharpoons \mathrm{Cl}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+}$
$0.1-$ уу у $+0.09+x$
We have, $y+0.09+x=10^{-1}=0.10$
$x+y=0.01$
Also, $\mathrm{K}_{\mathrm{CH}_{3} \mathrm{COOH}}=10^{-5}=\frac{0.1 \times \mathrm{y}}{0.01-\mathrm{y}} \approx \frac{0.01}{0.1}$
$\therefore \mathrm{x} \approx 0.01$
$\therefore \mathrm{K}_{\mathrm{Cl}_{2} \mathrm{HCOOH}}=\frac{\mathrm{x} \times 0.1}{0.09-0.01}=\frac{0.01 \times 0.1}{0.08}$
$=1.25 \times 10^{-2}$
Q. 9 (A,B,C)

MW of $\mathrm{ClCH}_{2} \mathrm{COOH}=44.5$
No. of Moles of acid $=\frac{9.45}{94.5}=0.1$
\therefore [acid] $=0.1 \times 2=0.2 \mathrm{M}$
$\mathrm{ClCH}_{2} \mathrm{COOH} \rightleftharpoons \mathrm{ClCH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+}$
$0.2(1-\alpha) 0.1 \alpha \quad 10^{-2}=0.2 \alpha$

$$
\alpha=\frac{10^{-2} \times 10^{5}}{2}=\mathbf{0 . 0 5}
$$

Q. 10 (A, C, D)
(A) In 0.6 m M HCOOH solution
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{C}-\left[\mathrm{H}^{+}\right]} \Rightarrow 8 \times 10^{-4}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{6 \times 10^{-4}-\left[\mathrm{H}^{+}\right]}$
$\therefore \quad\left[\mathrm{H}^{+}\right]=\mathbf{4 \times 1 0} \mathbf{1 0}^{-4} \mathrm{M}$.
So solution in (A), (C) \& (D) are ISOHYDRIC.
Q. 11 (A, B)

Total $\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a} 1} \mathrm{C}_{1}+\mathrm{K}_{\mathrm{a} 2} \mathrm{C}_{2}}$
$=\sqrt{\left(3.6 \times 10^{-4} \times \frac{0.5}{500} \times 100\right)+\left(8 \times 10^{-4} \times \frac{0.1}{500} \times 400\right)}$
$\therefore \quad\left[\mathrm{H}^{+}\right]=10^{-2} \mathrm{M}$.
For $\mathrm{HN}_{3},\left[\mathrm{~N}_{3}^{-}\right]=\frac{\mathrm{K}_{\mathrm{a}}\left[\mathrm{HN}_{3}\right]}{\left[\mathrm{H}^{+}\right]}=\frac{3.6 \times 10^{-4} \times 0.5}{0.01 \times 500} \times 100=$
$3.6 \times 10^{-3} \mathrm{M}$.
For $\mathrm{HOCN},\left[\mathrm{OCN}^{-}\right]=\frac{\mathrm{K}_{\mathrm{a}}[\mathrm{HOCN}]}{\left[\mathrm{H}^{+}\right]}$
$=\frac{8 \times 10^{-4} \times 0.1 \times 400}{0.01 \times 500}=6.4 \times 10^{-3} \mathrm{M}$.
Q. 12 (A, C)

As K_{a} of acid increases, K_{b} of its conjugate base decreases.
Q. 13 (B, C)

On the basis of ostwald dilution law, number of H^{+} ions will increase but increase in volume will be more. Therefore, $\left[\mathrm{H}^{+}\right]$decreases, pH increases.
Q. 14 (B, C, D)

Let BA be this salt $\mathrm{BA} \rightarrow \mathrm{B}^{+}+\mathrm{A}^{-}$
A^{-}does not undergo hydrolysis because HA is strong acid. B^{+}undergoes hydroysis
$h=h=$ degree of hydrolysis where $K_{h}=$ Hydrolysis constant $=$.
$\mathrm{h} \propto$ greater the hydrolysis constant greater the h (degree of hydrolysis).
$\mathrm{h} \propto$ greater the K_{b} lesser the h .
Hydrolysis is endothermic, K_{h} increases with temperature and h also increase with temperature.
$\mathrm{h} \propto \mathrm{V}=$ volume of salt solution hence h increases with dilution. $\mathrm{K}_{\mathrm{h}}=$
Both K_{w} and K_{b} change with temperature, hence K_{h} changes with temperature.
Hence, statement (B) is correct. h increases if K_{b} decreases, statement(C) correct.
It is found that as temperature increase, K_{w} and K_{b} increase but increase in K_{w} is greater than increase in K_{b}.
Hence, h increases with increase in temperature. or h decrease in temperature., hence statement.
(D) is correct.
(D) is not correct from explanation of (B).
Q. 15 (A, B, C)

At eq. point $\mathrm{pH}=4.5$
$\mathrm{pOH}=9.5$
$\mathrm{pOH}=1 / 2[\mathrm{Pkb}+\mathrm{pkw}+\mathrm{hc}]$
$9.5=1 / 2[5.6+14+\mathrm{hc}] \Rightarrow \mathrm{C}=0.25$
(C) Total volume be $(100+\mathrm{V})$
$0.25 \times(100+\mathrm{V})=0.5 \times \mathrm{C} \Rightarrow \mathrm{V}=100 \mathrm{ml}$
(D) $100 \mathrm{M}=0.5 \mathrm{~V}$
$100 \times \mathrm{M}=0.5 \times 100$
$\mathrm{M}=0.5$
100 ml \qquad 0.5 mole

100 ml \qquad 0.055 mole of base
$0.05=\frac{\mathrm{wt} .}{45} \Rightarrow \mathrm{wt} .=2.25 \mathrm{gm}$
$\%$ of base $=\frac{2.25}{2.5} \times 10090 \%$
Q. 16 (A, D)
(A) $\frac{\left[\mathrm{H}_{3} \mathrm{AsO}_{4}\right]}{\left[\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}\right]}=\frac{\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{1}}=\frac{10^{-8}}{2.5 \times 10^{-4}}=\frac{1}{25000}$
Q. 21 (C, D)

Higher the K_{a} of acid lower is the pH of acid for same concentration.
Q. 22 (A, D)

$$
\mathrm{HIn} \longrightarrow \mathrm{H}^{+} \quad+\mathrm{In}^{-}
$$

$$
\mathrm{K}_{\mathrm{In}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]} \Rightarrow \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}=\frac{\mathrm{K}_{\mathrm{In}}}{\left[\mathrm{H}^{+}\right]}=\frac{10^{-9}}{10^{-9.6}}=
$$

$10^{0.6}=4$
$\therefore \%$ of $\left[\mathrm{In}^{-}\right]$in solution $=\frac{4}{5} \times 100=80 \%$
so pink colour will be visible.
Q. 23 (B,C,D)

Initial decrement is due to consumption of free OH^{-} ions, then slow decrement in pH is due to basic buffer solution and minimum slope will be there when there is best buffer action ([salt] / [base] = 1)
Q. 24 (B, C)
$\mathrm{BOH}+\mathrm{HCl} \rightarrow \mathrm{BCl}+\mathrm{H}_{2} \mathrm{O}$
100 m 0.5 V 20 M
$100 \mathrm{M}-0.5 \mathrm{~V} 0=80 \mathrm{M} 14-\mathrm{a}$
$\mathrm{pOH}=\mathrm{pKb}+\log \frac{\text { salt }}{\text { base }}$
$5=\mathrm{pKb}+\log \frac{20 M}{80 M}$
$\Rightarrow \mathrm{pkb}=5-\log 0.25 \Rightarrow \mathrm{pkb}=5.6$
$\Rightarrow \mathrm{Kb}=2.5 \times 10^{-6}$
greater than 10^{-6}
Q. 25 (A, B, C,D)

Factual
Q. 26 (C, D)

In AgNO_{3} solution, the solubility of AgCN will decrease as compared to pure water because of common ion effect of Ag^{+}ion.
In NH_{3} solution and buffer of $\mathrm{pH}=5$, the solubility of AgCN will increase due to complex formation in case of NH_{3} solution and hydrolysis of CN^{-}ions in case of buffer of $\mathrm{pH}=5$.
Q. 27 (A,B)
$\mathrm{K}_{\mathrm{sp}}=1.1 \times 10^{-11}=\left(1.4 \times 10^{-4}\right)^{\mathrm{x}+\mathrm{y}} \mathrm{x}^{\mathrm{x}} \cdot \mathrm{y}^{\mathrm{y}}$
so we have $\mathrm{x}+\mathrm{y}=3$ (by comparing values)
so, $\mathrm{x}^{\mathrm{x}} \cdot \mathrm{y}^{\mathrm{y}}=\frac{1.1 \times 10^{-11}}{1.4 \times 1.4 \times 1.4 \times 10^{-12}}=\frac{110}{1.96 \times 1.4}=$ 4
Hence $\mathrm{x}=1, \mathrm{y}=2$ or $\mathrm{y}=1, \mathrm{x}=2$
Q. 28 (B,D)

Facutal
Q. 29 (C, D)

Given graph is plotted for the titration of weak diprotic acid with base.
Q. 30 (A, B, D)
[$\left.\mathrm{Ag}^{+}\right]$ion required to precipitate Cl^{-}ion $==2 \times 10^{-9}$ $\mathrm{mol} / \mathrm{L}$.
$\left[\mathrm{Ag}^{+}\right]$ion required to precipitate I^{-}ion $===8 \times 10^{-15}$ $\mathrm{mol} / \mathrm{L}$.
Since $\left[\mathrm{Ag}^{+}\right]$ion conc. required to precipitate AgI is less than the $\left[\mathrm{Ag}^{+}\right]$ion conc. required to precipitate AgCl , AgI precipitates first.
Hence choices (A),(B) and (D) are correct while (C) is incorrect.
Q. 31 (A, B)
$\mathrm{H}_{2} \mathrm{SO}_{4}$ is a strong acid and it completely dissociated in $\mathrm{H}_{2} \mathrm{O}$. Hence its $\mathrm{K}_{\mathrm{a}_{1}}$ and $\mathrm{K}_{\mathrm{a}_{2}}$ are determined in $\mathrm{CH}_{3} \mathrm{COOH}$.
Also $\mathrm{H}_{2} \mathrm{SO}_{4}$ is neutral while HSO_{4}^{-}because the - ve charge has more affinity towards H^{+}ion. Hence choices (A) and (B) are correct while (C) is incorrect. As $\mathrm{H}_{2} \mathrm{SO}_{4}$ is completely dissociated in water so a $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is completely dissociated and its $\left[\mathrm{H}^{+}\right]$ion conc. will be equal to 0.02 M .
Hence choice (D) will be incorrect.
Q. 32 (A, B, C)
$\left[\mathrm{A}^{2-}\right]=\mathrm{K}_{\mathrm{a}_{2}}=10^{-5}$
$\mathrm{pH}=1 \mathrm{pH}=3$
$\left[\mathrm{H}^{+}\right]_{1}=10^{-1}\left[\mathrm{H}^{+}\right]_{2}=10^{-3}$
$\frac{\left[\mathrm{H}^{+}\right]_{1}}{\left[\mathrm{H}^{+}\right]_{2}}=100$
$\mathrm{pH}=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}-\mathrm{pK}_{\mathrm{b}}\right)$
pH is independent of dilution with in a limit since no concentration term in pH expression.

Comprehension \# 1 (Q. No. 33 to 35)
Q. 33 (D)

Facutal
Q. 34 (A)

Since K_{a} of $\mathrm{CH}_{3} \mathrm{COOH} \& \mathrm{~K}_{\mathrm{b}}$ of $\mathrm{NH}_{4} \mathrm{OH}$ are same so degree of hydrolysis of $\mathrm{CH}_{3} \mathrm{COO}^{-} \& \mathrm{NH}_{4}^{+}$are exactly same.
Q. 35 (C)

Facutal

Comprehension \# 2 (Q. No. 36 to 39)

Q. 36 (A)

Mole of Potash Alum $=\frac{11.85}{474}$
$=0.025$
Mole $\left[\mathrm{Al}^{3+}\right]=0.025$
Mole $\left[\mathrm{K}^{+}\right]=0.025$
If none of the Ion Hydrolysed
$\Rightarrow\left[\mathrm{H}^{+}\right]=10^{-7}$
Q. 37 (A)
$\mathrm{Al}^{3+}+\mathrm{H}_{2} \mathrm{O} \underset{\underset{\mathrm{K}_{\mathrm{a}}}{\rightleftharpoons}}{\stackrel{\mathrm{K}_{\mathrm{a}}}{\rightleftharpoons}} \mathrm{Al}(\mathrm{OH})^{2+}+\mathrm{H}^{+}$
C-x x
X
$C=\frac{0.025}{100} \times 1000=0.25$
$\Rightarrow \frac{\mathrm{x}^{2}}{0.25-\mathrm{x}}=1.4 \times 10^{-5} \Rightarrow \mathrm{x}^{2}=1.4 \times 0.25 \times 10^{-}$
$5 \Rightarrow \mathrm{x}=1.87 \times 10^{-3}$
Q. 38 (C)
$\mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \underset{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}}{\rightleftharpoons} \mathrm{HSO}_{4}^{-}+\mathrm{OH}^{-}$
0.5-x x

X
$\frac{x^{2}}{0.5-x}=\frac{10^{-14}}{1.25 \times 10^{-2}}($ Neglect $x)$
$\Rightarrow\left[\mathrm{OH}^{-}\right]=\mathrm{x}=6.32 \times 10^{-7}$

$$
\Rightarrow\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{6.25 \times 10^{-7}}=1.58 \times 10^{-8}
$$

Q. 39 (A)

$$
\begin{aligned}
& \mathrm{Al}^{3+}+\mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \underset{\frac{\mathrm{~K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}} \cdot \mathrm{~K}_{\mathrm{b}}}}{\rightleftharpoons} \mathrm{Al}(\mathrm{OH})^{2+}+\mathrm{HSO}_{4}^{-} \\
& 0.25-\mathrm{x} \quad 0.5-\mathrm{x} \\
& \frac{\mathrm{~K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}} \cdot \mathrm{~K}_{\mathrm{b}}}=\frac{1.4 \times 10^{-5}}{1.25 \times 10^{-2}}=1.12 \times 10^{-3} \\
& \Rightarrow \frac{\mathrm{x}}{(0.25-\mathrm{x})(0.5)-\mathrm{x}}=1.12 \times 10^{-3} \\
& \Rightarrow \mathrm{x}=\left[\mathrm{HSO}_{4}^{-}\right]=0.0114 \\
& \Rightarrow \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{SO}_{4}^{2-}\right]}{\left[\mathrm{HSO}_{4}^{-}\right]}=\mathrm{K}_{\mathrm{a}}=1.25 \times 10^{-2} \\
& \Rightarrow \frac{\left[\mathrm{H}^{+}\right][0.5-0.0114]}{[0.0114]}=1.25 \times 10^{-2} \\
& \Rightarrow\left[\mathrm{H}^{+}\right]=2.92 \times 10^{-4} 10^{-2} \\
& \Rightarrow\left[\mathrm{H}^{+}\right]=2.92 \times 10^{-4}
\end{aligned}
$$

Comprehension \# 3 (Q. No. 40 to 42)

Q. 40 (C)

From the Graph 19 ml
Q. 41 (C)

From the Graph $\mathrm{pH} \approx 8.5$
Q. 42 (C)
$\frac{1.2}{\text { Mol. } \mathrm{mass}}=\frac{0.222 \times 19}{1000}$
\Rightarrow Mol. mass $=284.5$

Comprehension \# 4 (Q. No. 43 to 45)

Q. 43 (A)

For SrF_{2} in pure water

$$
4 \mathrm{~s}_{1}^{3}=\mathrm{K}_{\mathrm{sp}}
$$

For SrF_{2} in 0.1 M NaF solution

$$
\begin{aligned}
& \mathrm{s}_{2}(0.1)^{2}=\mathrm{K}_{\mathrm{sp}} \\
\Rightarrow & 4 \mathrm{~s}_{1}{ }^{3}=\mathrm{s}_{2}(0.01)
\end{aligned}
$$

$\Rightarrow 4 \mathrm{~s}_{1}{ }^{3}=\mathrm{s}_{1} \times \frac{256}{10^{6}}(0.01)$
$\Rightarrow \mathrm{s}_{1}=8 \times 10^{-4} \mathrm{M}$
$\therefore \quad \mathrm{K}_{\mathrm{sp}}=4 \mathrm{~s}_{1}{ }^{3}=\mathbf{2 . 0 4 8} \times \mathbf{1 0}^{-9}$
Q. 44 (C)
$\left[\mathrm{Sr}^{2+}\right]_{\mathrm{i}}=0.0011=11 \times 10^{-4} \mathrm{M}$
$\left[\mathrm{Sr}^{2+}\right]_{\mathrm{f}}=2 \times 10^{-4} \mathrm{M}$
$\therefore \quad\left[\mathrm{Sr}^{2+}\right]$ precipitated $=(11-2) \times 10^{-4} \mathrm{M}$
$=9 \times 10^{-4} \mathrm{M}$
[$\mathrm{F}-$] needed for this precipitation
$=2 \times 9 \times 10^{-4}=18 \times 10^{-4} \mathrm{M}$
Also, $\left[\mathrm{Sr}^{2+}\right]_{\mathrm{f}}[\mathrm{F}-]_{\mathrm{f}}^{2}=\mathrm{K}_{\mathrm{sp}}=2.048 \times 10^{-9}$
But, $\left[\mathrm{Sr}^{2+}\right]_{\mathrm{f}}=2 \times 10^{-4} \mathrm{M}$
$\therefore \quad\left[\mathrm{F}^{-}\right]_{\mathrm{f}}=3.2 \times 10^{-3} \mathrm{M}$
\therefore Total $\left[\mathrm{F}^{-}\right]$needed $=3.2 \times 10^{-3}+18 \times 10^{-4}=5 \times$ $10^{-3} \mathrm{M}$
$\therefore \quad \mathrm{NaF}$ needed for 100 ml solution $=\frac{5 \times 10^{-3} \times 42}{10}$
$=0.021 \mathrm{~g}$
Q. 45 (B)
$\mathrm{SrF}_{2} \longrightarrow \mathrm{Sr}^{2+}+2 \mathrm{~F}^{-}$
$\mathrm{s} \quad 2 \mathrm{~s}$
F^{-}will react with H^{+}to produce HF
$\mathrm{F}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{HF}$
$\mathrm{K}=\frac{1}{\mathrm{~K}_{\mathrm{a}}}=\frac{[\mathrm{HF}]}{\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]}=\frac{7}{10^{-5}}$
$\therefore \quad[\mathrm{HF}]=7 \times 10^{5}\left[\mathrm{~F}^{-}\right]\left[\mathrm{H}^{+}\right]\left(\because\left[\mathrm{H}^{+}\right]=10^{-5} ; \mathrm{pH}=5\right)$ $=7 \times 10^{5}\left[\mathrm{~F}^{-}\right] \times 10^{-5}=7\left[\mathrm{~F}^{-}\right]$
Here
$\left[\mathrm{F}^{-}\right]+[\mathrm{HF}]=2 \mathrm{~s}$
$\therefore \quad\left[\mathrm{F}^{-}\right]=\frac{\mathrm{s}}{4}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}=\mathrm{s}\left(\frac{\mathrm{~s}}{4}\right)^{2}=2.048 \times 10^{-9} \\
\therefore \quad & \mathrm{~s}=3.2 \times 10^{-3} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Q. 46 A-S, B-S, C-Q
(A) $\left[\mathrm{H}^{+}\right]=\frac{200 \times 1.225 \times \frac{25}{100} \times 2}{98}$ $=1.25$
$\left[\mathrm{OH}^{-}\right]=0.525 \times \frac{800}{1000} \times 3=1.26$

Remaining $\left[\mathrm{OH}^{-}\right]=10^{-2}$
$\Rightarrow \mathrm{pOH}=2$
$\Rightarrow \mathrm{pH}=12$
Indicator having range 11.4 to 13 .
(B) $\mathrm{pH}=11-\log 2+\log \frac{0.8}{0.1}$
$=11+2 \log 2$
$=11.6$
Indicator having range 11.4 to 13 .
(C) HCl m.eq $=5$

NaOH m.eq $=13$

Remaining $\mathrm{NaOH}=8$
m.eq of $\mathrm{HA}=10$
$\mathrm{Ha}+\mathrm{OH}^{-} \longrightarrow \mathrm{A}-+\mathrm{H}_{2} \mathrm{O}$
10
2
08
$\mathrm{pH}=\mathrm{P}^{\mathrm{K}^{\mathrm{a}}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
$=5+\log 4$
$\Rightarrow 5.6$
Indcator having range 4.6 to 6.4
Q. 47 (A - p, q, r, s); (B-p,r);(C-r);(D-p,q, s)
(A) $\left[\mathrm{H}^{+}\right]$in HCl solution $=10^{-5} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]$in $\mathrm{H}_{2} \mathrm{~S}$ solution $=\sqrt{\mathrm{K}_{\mathrm{a}} \times \mathrm{C}}=10^{-4} \mathrm{M}$
so $\left[\mathrm{H}^{+}\right]$in HCl solution $<\left[\mathrm{H}^{+}\right]$in $\mathrm{H}_{2} \mathrm{~S}$ solution
\& $\left[\mathrm{OH}^{-}\right]$in HCl solution $>\left[\mathrm{OH}^{-}\right]$in $\mathrm{H}_{2} \mathrm{~S}$ solution
\& degree of dissociation of water in HCl solution > degree of dissociation of water in $\mathrm{H}_{2} \mathrm{~S}$ solution
pH of HCl solution $>\mathrm{pH}$ of $\mathrm{H}_{2} \mathrm{~S}$ solution.
(B) At $\mathrm{pH}=4.74$ in $\mathrm{CH}_{3} \mathrm{COOH}$ solution, $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right.$ $]=\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$
\therefore degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}=\frac{1}{2}$
At pH $=9.26$ i.e. $\mathrm{pOH}=4.74$ in $\mathrm{NH}_{4} \mathrm{OH}$ solution, $\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{NH}_{4} \mathrm{OH}\right]$
\therefore degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}=$ degree of dissociation of $\mathrm{NH}_{4} \mathrm{OH}$
degree of dissociation of water in $\mathrm{CH}_{3} \mathrm{COOH}$ solution > degree of dissociation of water in $\mathrm{NH}_{4} \mathrm{OH}$ solution.
(C) $\left[\mathrm{H}^{+}\right]$in $\mathrm{CH}_{3} \mathrm{COOH}$ solution $=\sqrt{1.8 \times 10^{-5} \times 0.1}=$ $\sqrt{1.8} \times 10^{-3} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]$in HCOOH solution $=\sqrt{1.8 \times 10^{-4} \times 1}=$ $\sqrt{1.8} \times 10^{-2} \mathrm{M}$
so, degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}=$ degree dissociation of HCOOH .
(D) $\left[\mathrm{H}^{+}\right]$in HA_{1} solution $=\sqrt{10^{-5} \times 0.1}=10^{-3} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]$in HA_{2} solution $=\sqrt{10^{-6} \times 0.01}=10^{-4} \mathrm{M}$
so $\left[\mathrm{OH}^{-}\right]$in solution of $\mathrm{HA}_{1}<\left[\mathrm{OH}^{-}\right]$in solution of HA_{2}
pH in solution of $\mathrm{HA}_{1}<\mathrm{pH}$ in solution of HA_{2}
\& degree of dissociation of water $\mathrm{HA}_{1}<$ degree of dissociation of water HA_{2}.

Q. 48 A-P, B-Q, C-S, D-R

(A) $\left[\mathrm{OH}^{-}\right]=\frac{10 \times 0.03}{500}=6 \times 10^{-4}$

$$
\left[\mathrm{OH}^{-}\right]=\frac{0.08 \times 5}{500}=8 \times 10^{-4}
$$

Remaining $\left[\mathrm{H}^{+}\right]=2 \times 10^{-4}$
$\mathrm{pH}=4-\log 2=3.7$
(B) $\left[\mathrm{RNH}_{3} \mathrm{Cl}\right]=\frac{0.5 \times 10}{50}=0.1$
$[\mathrm{KOH}]=0.1$
$\mathrm{RNH}_{3} \mathrm{Cl}+\mathrm{KOH} \longrightarrow \mathrm{RNH}_{2}+\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$
$\begin{array}{llll}0.1 & 0.1 & 0.1 & 0.1\end{array}$
$\mathrm{RNH}_{2}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{K}_{\mathrm{b}}}{\rightleftharpoons} \mathrm{RNH}_{3}^{+}+\mathrm{OH}^{-}$
$0.1-x$
xx

$$
\begin{aligned}
& x^{2} / 0.1-x=K_{b}=K_{w} / K_{x}=10^{-5} \\
& \Rightarrow x=10^{-3} \Rightarrow p O H=3 ; p H=11
\end{aligned}
$$

(C)Buffer : $\mathrm{HCO}_{3}^{-} / \mathrm{CO}_{3}{ }^{2-}$

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pKa}+\log \frac{\text { Salt }}{\text { Acid }} \\
& =11-\log 4+\log \frac{4}{8} \\
& =11-\log 4-\log 2 \\
& =11-3 \log 2=11-0.9 \\
& =10.1 \\
& \text { (D) } \mathrm{CO}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{CO}^{3+}+3 \mathrm{OH}^{-} \\
& \quad \mathrm{S} \\
& \Rightarrow 27 \mathrm{~S}^{4}=27 \times 10^{-44} \\
& \Rightarrow \mathrm{~S}=10^{-11} \& \\
& {\left[\mathrm{OH}^{-}\right]=\left[10^{-11}+\mathrm{x}\right]: \mathrm{x} \text { from water }} \\
& {\left[\mathrm{H}^{+}\right]=\mathrm{x} \& \mathrm{x}\left(10^{-11}+\mathrm{x}\right)=10^{-14}} \\
& \Rightarrow \mathrm{pH} \approx 7
\end{aligned}
$$

Q. $49(\mathrm{~A}-\mathrm{p}, \mathrm{q}) ;(\mathrm{B}-\mathrm{q}, \mathrm{r}) ;(\mathrm{C}-\mathrm{p}, \mathrm{q}, \mathrm{s}) ;(\mathrm{D}-\mathrm{r}, \mathrm{s})$
$(\mathrm{A}) \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{OH}^{-} \longrightarrow \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$
m.moles5025

Buffer solution $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$

$$
\begin{aligned}
& \text { (B) } \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{OH}^{-} \longrightarrow \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \\
& \text { m.moles5050-- }
\end{aligned}
$$

Amphiprotic, $\mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}}{2}=\frac{13}{2}=6.5$.
(C) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{OH}^{-} \longrightarrow \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$ m.moles5075-2550
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
m.moles502525-25

Buffer solution $\mathrm{pH}=\mathrm{pK}_{\mathrm{a} 2}$.
(D) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{OH}^{-} \longrightarrow \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$ m.moles50 100
-50
50
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$
m.moles50

50
--
Salt hydrolysis, $\mathrm{pH}>7$.
Q. $50(A-s) ;(B-p, q) ;(C-q, s) ;(D-q, r)$
(A) For AgBr ,
$K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]$
so on increase in $\left[\mathrm{Br}^{-}\right]$, solubility of AgBr decreases.
(B) For $\mathrm{AgCN}, \quad \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CN}^{-}\right]$
CN^{-}undergoes hydrolysis so solubility in water is more than expectation.

In acidic solution, CN^{-}gets protonated so solubility of AgCN increases.

AgCN forms complex $\mathrm{Ag}(\mathrm{CN})_{2}^{-}$with excess of CN^{-}

$$
\text { (C) For } \mathrm{Fe}(\mathrm{OH})_{3}, \quad \mathrm{~K}_{\mathrm{sp}}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3} \text {. }
$$

In acidic solution OH^{-}decreases so solubility increases.

Solubility decreases in presence of OH^{-}.
(D) For $\mathrm{Zn}(\mathrm{OH})_{2}$,

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}
$$

$\mathrm{Zn}(\mathrm{OH})_{2}$ is amphoteric in nature so its solubility increases in both acidic as will as strongly basic solution.

NUMERICAL VALUE BASED

Q. 1 [7]

$$
\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

NaCl is a salt of strong base and strong acid, hence it gives the neutral solution with $\mathrm{pH}=7$.
Q. $2 \quad[9\}$
$\mathrm{MOH} \rightleftharpoons \mathrm{M}^{+}+\mathrm{OH}^{-}$
$\left[\mathrm{OH}^{-}\right] \sqrt{\mathrm{K}_{\mathrm{sp}}}=\sqrt{1 \times 10^{-10}}=10^{-5}$
$\mathrm{pH}=9$.
Q. 3 [7]
Q. 4 [6]

$$
\mathrm{s}=\sqrt{\mathrm{K}_{\mathrm{sp}}}=\sqrt{36}=6 \mathrm{M}
$$

Q. 5 [3]
$\mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{NH}_{4} \mathrm{CN}, \mathrm{HCN}+\mathrm{NaCN}$
Q. 6 [4]
Q. 7 [9]
Q. 8 [0]
$\Delta G^{0}=-2.303 R T \log K_{C}$
Q. 9 [2]

Phenolphthalein is used for titration of solution of
(i) strong acid and strong base and
(ii) weak acid and strong base
Q. 10 [5 [(i) to (v)]
Q. 11 [31]

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}
$$

$\Rightarrow \quad 4.5=4.2+\log \left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right) \quad \Rightarrow \quad \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=2$
\therefore volume of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$ required $=\mathrm{V}_{2}=62 \mathrm{~mL}$ volume of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ required $=\mathrm{V}_{1}=\mathbf{3 1} \mathbf{~ m L}$.

KVPY

PREVIOUS YEAR'S

Q. 1 (D)

Meq of $\mathrm{CH}_{3} \mathrm{COOH}=100 \times 0.1 \times 1=10$
Meq of $\mathrm{CH}_{3} \mathrm{COONa}=50 \times 0.2 \times 1=10$
$\mathrm{pH}=\mathrm{pKa}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\mathrm{pH}=4.76+\log \frac{10}{10}$
$\mathrm{pH}=4.76+\log 1$
$\mathrm{pH}=4.76$
Q. 2 (B)
$\mathrm{pH}=\mathrm{pHa}+\log \frac{\text { [Conjugate base }]}{[\text { Acid }]}$
\because [Conjugate base] $=[$ Acid $]$
$\mathrm{pH}=\mathrm{pKa}=5.85$
Q. 3 (A)

$$
\begin{array}{ll}
\mathrm{C}=0.1 \mathrm{M} & \mathrm{~K}_{\mathrm{a}}=10^{-5} \\
\mathrm{~K}_{\mathrm{a}}=\alpha^{2} \mathrm{C} & \\
10^{-5}=\alpha^{2} \times 0.1 & \alpha^{2}=10^{-4} \\
& \alpha=10^{-2}
\end{array}
$$

Q. 4 (B)

Order of pH

less then 7
$\mathrm{NH}_{4} \mathrm{CI}$
:---:
NaCl
:---:
$\mathrm{CH}_{3} \mathrm{OONa}$

Salt of strong Salt of strong Salt of strong acid + weak base acid + strong base base + weak acid
Q. 5 (D)
$\mathrm{K}_{\mathrm{sp}(\mathrm{Ag} \mathrm{Br})}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]$
$=\left(5 \times 10^{-10}\right)\left(10^{-3}\right)$
$=5 \times 10^{-3}$
Now
$5 \times 10^{-3}=\left(10^{-2}\right)[\mathrm{Br}]$
$[\mathrm{Br}]=5 \times 10^{-11} \mathrm{M}$
Q. 6 (C)
$\mathrm{K}_{\mathrm{sp}} \mathrm{Mg}(\mathrm{OH})_{2}=\left[\mathrm{Mg}^{+2}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$5.6 \times 10^{-12}=\left[10^{-10}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$\left[\mathrm{OH}^{-}\right]=\sqrt{5.6 \times 10^{-2}}=0.25 \mathrm{M}$
Q. $7 \quad$ (A)

Dil aqueous solution of NH_{3} is $\mathrm{NH}_{4} \mathrm{OH}$ solution
$\mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\overline{\mathrm{O}} \mathrm{H}$
On adding solid ammonium chloride
$\mathrm{NH}_{4} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
the reaction moves backward due to common ion effect.
The concentration of OH^{-}decreases and pH decreases
Q. 8 (D)

Given $\mathrm{K}_{\mathrm{sp}}=10^{-10}$
For $\mathrm{BaSO}_{4}, \mathrm{~K}_{\mathrm{sp}}=\mathrm{S}^{2}$.
$\mathrm{S}=10^{-5} \mathrm{~mol} / \mathrm{L} \Rightarrow 2.33 \times 10^{-3} \mathrm{~g} / \mathrm{L}$
Q. 9 (A)

Mixing equal volume of $\mathrm{NH}_{4} \mathrm{OH}(0.2 \mathrm{M})$ and $\mathrm{HCl}(0.1$ M) result in formation of $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$ basic buffer mixture
Q. 10 (B)

For $\mathrm{CuI} \Rightarrow \mathrm{CuI} \longrightarrow \mathrm{Cu}_{\mathrm{S}_{1}}+\mathrm{I}_{\mathrm{S}_{1}}^{-}$
$\mathrm{K}_{\text {sp }}(\mathrm{CuI})=\mathrm{S}_{1}^{2}=4 \times 10^{-12} \Rightarrow \mathrm{~S}_{1}=2 \times 10^{-6}$
For $\mathrm{Ag}_{2} \mathrm{CrO}_{4} \Rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4} \longrightarrow \underset{2 \mathrm{~S}_{2}}{2 \mathrm{Ag}^{+}}+\underset{\mathrm{S}_{2}}{\mathrm{CrO}_{4}^{2-}}$
$\mathrm{K}_{\mathrm{sp}}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=4 \mathrm{~S}_{2}{ }^{3}=4 \times 10^{-2} \Rightarrow \mathrm{~S}_{2}=10^{-4}$
So, $\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}=\frac{2 \times 10^{-6}}{10^{-4}}=0.02$

JEE-MAIN

PREVIOUS YEAR'S
Q. 1
[6.76]
$\mathrm{pH}=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}-\mathrm{pK}_{\mathrm{b}}\right)$

$$
\begin{aligned}
& =\frac{1}{2}(14+4.75-5.23) \\
& =6.76
\end{aligned}
$$

Q. 2 (1)

For $\mathrm{Ca}(\mathrm{OH})_{2}$
$K_{\text {sp }}=4 \mathrm{~s}^{3}$
$5.5 \times 10^{-6}=4 \mathrm{~s}^{3}$
$\mathrm{s}=\sqrt[3]{\frac{5.5}{4} \times 10^{-6}}=1.11 \times 10^{-2} \mathrm{M}$
Q. 3 (1)

Lets solubility is x

$$
\begin{aligned}
& \mathrm{AgCN}_{\mathrm{x}}^{\rightleftharpoons} \mathrm{Ag}^{+}+\mathrm{CN}^{-} \quad \mathrm{K}_{\mathrm{SP}}=2.2 \times 10^{-16} \\
& \mathrm{H}^{+}+\mathrm{CN}^{-} \rightleftharpoons \mathrm{HCN} \quad \mathrm{~K}=\frac{1}{\mathrm{k}_{\mathrm{a}}}=\frac{1}{6.6 \times 10^{-10}}-10 \\
& \mathrm{~K}_{\mathrm{SP}} \times \frac{1}{\mathrm{k}_{\mathrm{a}}} \mathrm{k}=\left[\mathrm{Ag}^{+1}\right][\mathrm{CN}-] \times \frac{[\mathrm{HCN}]}{\left[\mathrm{H}^{+}\right]\left[\mathrm{CN}^{-}\right]} \\
& 2.2 \times 10^{-16} \times \frac{1}{6.6 \times 10^{-10}}=\frac{[\mathrm{S}] \times[\mathrm{S}]}{10^{-3}} \\
& \mathrm{~S}^{2}=\frac{2.2}{6.6} \times 10^{-9} \\
& \mathrm{~S}^{2}=\frac{1}{30} \times 10^{-8} \\
& \mathrm{~S}=\sqrt{\frac{1}{30}} \times 10^{-4}=1.9 \times 10^{-5}
\end{aligned}
$$

Q. $4 \quad$ (50)

Most precise volume of $\mathrm{HCl}=5 \mathrm{ml}$ at equivalence point
Meq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ meq. of HCl .
Let molarity of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
solution $=\mathrm{M}$, then
$\mathrm{M} \times 10 \times 2=0.2 \times 5 \times 1$
$\mathrm{M}=0.05 \mathrm{~mol} / \mathrm{L}$
$=0.05 \times 1000$
$=50 \mathrm{mM}$
Q. 5 (78)

Moles of Benzoic acid $=\frac{6.1}{122}$
= moles of m-bromobenzoic acid
So, weight of m-bromobenzoic acid
$=\frac{6.1}{122} \times 201 \mathrm{gm}$
$=10.05 \mathrm{gm}$
$\%$ yield $=\frac{\text { Actual weight }}{\text { Theoretical weight }} \times 100$
$=\frac{7.8}{10.05} \times 100$
$=77.61 \%$
Q. 6 (64)

In pure water,
$\mathrm{K}_{\mathrm{sp}}=\mathrm{S}_{2}=\left(8 \times 10^{-4}\right)^{2}$
$=64 \times 10^{-8}$
In $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{SO}_{4(\text { aq) }} \rightarrow 2 \mathrm{H}_{\text {(aq) }}^{+}+\mathrm{SO}_{4}{ }^{2-}$ (aq.)
$0.02 \quad 0.01$
$\mathrm{BaSO}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}$
$\mathrm{x} \mathrm{x}(\mathrm{x}+0.01)$
$\mathrm{K}_{\text {sp }}=\mathrm{x}(\mathrm{x}+0.01)$
$=64 \times 10^{-8}$
$\mathrm{x}+0.01 \cong 0.01 \mathrm{M}$
So, $x(0.01)=64 \times 10^{-8}$
$\mathrm{x}=64 \times 10^{-6} \mathrm{M}$
Q. 7 (10)
$\mathrm{pH}=\mathrm{pKa}+\log \frac{[\mathrm{CB}]}{[\mathrm{WA}]}$
$5.74=4.74+\log \frac{[\mathrm{CB}]}{1}$
$\Rightarrow[C B]=10 \mathrm{M}$
Q. 8 (2)

$$
\mathrm{HA} f \mathrm{H}++\mathrm{A}^{-}
$$

Initial conc. 0.01 M 0.1 M 0
Equ. conc. $(0.01-x)(0.1+x) x M$ $\approx 0.01 \mathrm{M} \approx 0.1 \mathrm{M}$

Now, $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{x}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \Rightarrow 2 \times 10^{-6}=\frac{0.1 \times \mathrm{x}}{0.01}$
$\therefore \mathrm{x}=2 \times 10^{-7}$
Now, $\alpha=\frac{\mathrm{x}}{0.01}=\frac{2 \times 10^{-7}}{0.01}=2 \times 10^{-5}$

Q. 9 (1)

$\mathrm{H}_{2} \mathrm{SO}_{3}$ [Dibasic acid]
$\mathrm{c}=0.588 \mathrm{M}$
$\Rightarrow \mathrm{pH}$ of solution \Rightarrow due to First dissociation only since K_{a}, >> Ka_{2}
\Rightarrow First dissociation of $\mathrm{H}_{2} \mathrm{SO}_{3}$
$\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq}) f \mathrm{H}^{\oplus}(\mathrm{aq}) \mathrm{HSO}_{3}^{-}(\mathrm{aq}): \mathrm{ka}_{1}$
$=1.7 \times 10^{-2}$
$\mathrm{t}=0 \mathrm{C}$
t C-x x x
$\Rightarrow \mathrm{Ka}_{1}=\frac{1.7}{100}=\frac{\left[\mathrm{H}^{\oplus}\right]\left[\mathrm{HSO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]}$
$\Rightarrow \frac{1.7}{100}=\frac{\mathrm{x}^{2}}{(0.58-\mathrm{x})}$
$\Rightarrow 1.7 \times 0.588-1.7 \mathrm{x}=100 \mathrm{x}^{2}$
$\Rightarrow 100 \mathrm{x}^{2}+1.7 \mathrm{x}-1=0$
$\left[\mathrm{H}^{\oplus}\right]=\mathrm{x}=\frac{-1.7+\sqrt{(1.7)^{2}+4 \times 100 \times 1}}{2 \times 100}$
$=0.09186$
Therefore pH of sol. is : $\mathrm{pH}=-\log \left[\mathrm{H}^{\oplus}\right]$
$\Rightarrow \mathrm{pH}=-\log (0.09186)=1.036 ; 1$
Q. 10 (50)

For $\mathrm{A}_{2} \mathrm{X}$
$\mathrm{A}_{2} \mathrm{X} \rightarrow 2 \mathrm{~A}^{+}+\mathrm{X} 2^{-}$
$2 \mathrm{~S}_{1} \mathrm{~S}_{1}$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}_{1}^{3}=4 \times 10^{-12}$
$S_{1}=10^{-4}$
for MX
$\mathrm{MX} \rightarrow \mathrm{M}^{+}+\mathrm{X}^{-}$
$\mathrm{S}_{2} \mathrm{~S}_{2}$
$\mathrm{K}_{\mathrm{sp}}=\mathrm{S}_{2}^{2}=4 \times 10^{-12}$
$S_{2}=2 \times 10^{-6}$
so $\frac{\mathrm{S}_{\mathrm{A}_{2} \mathrm{X}}}{\mathrm{S}_{\mathrm{MX}}}=\frac{10^{-4}}{2 \times 10^{-6}}=50$

Q. 11 (1)

Q. 12 (4)
Q. 13 (3)
Q. 14 (108)
Q. 15 (6021)
Q. 16 (2)

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 [7]

$\mathrm{AgCl}(\mathrm{s})$

$$
\begin{gathered}
\rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \quad \mathrm{K}_{\mathrm{sp}}(\mathrm{AgCl})=1.6 \times 10^{-10} \\
\mathrm{Z} \quad \mathrm{Z}+\mathrm{Y}
\end{gathered}
$$

$\mathrm{CuCl}(\mathrm{s}) \rightleftharpoons \mathrm{Cu}^{+}+\mathrm{Cl}^{-}$
$\mathrm{K}_{\mathrm{sp}}(\mathrm{CuCl})=10^{-6}$

$$
\begin{aligned}
& \mathrm{Y} \quad \mathrm{Z}+\mathrm{Y} \\
& \mathrm{Z}(\mathrm{Z}+\mathrm{Y})=1.6 \times 10^{-10}
\end{aligned}
$$

and $\mathrm{Y}(\mathrm{Z}+\mathrm{Y})=10^{-6}$
$\Rightarrow(\mathrm{Z}+\mathrm{Y})^{2}=1.6 \times 10^{-10}+10^{-6} \quad \Rightarrow(\mathrm{Z}+\mathrm{Y})^{2} \approx 10^{-6}$
$\Rightarrow \mathrm{Z}+\mathrm{Y}=10^{-3}$
We know
$\Rightarrow \mathrm{Z}(\mathrm{Z}+\mathrm{Y})=1.6 \times 10^{-10} \quad \Rightarrow \mathrm{Z} \times 10^{-3}=1.6 \times 10^{-10}$
$\Rightarrow \mathrm{Z}=1.6 \times 10^{-7} \quad \Rightarrow 1.6 \times 10^{-x}=1.6 \times 10^{-7}$
$\Rightarrow \mathrm{x}=7$
Q. 2 (4.47)

$$
\begin{aligned}
& \mathrm{S}=\sqrt{\mathrm{K}_{\mathrm{sp}}\left(\frac{\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{\mathrm{a}}}+1\right)}=\sqrt{2 \times 10^{-10}\left(\frac{10^{-3}}{10^{-8}}+1\right)} \\
& =\sqrt{2 \times 10^{-5}}=4.47 \times 10^{-3}
\end{aligned}
$$

Q. $3 \quad[0.11]$

No. of eq. of oxalic acid $=\mathrm{No}$. of eq. of NaOH
or $\frac{5.00 \times 0.10}{1000} \times 2=\frac{9.0 \times \mathrm{M}}{1000} \times 1$
\therefore Molarity of NaOH solution $=\frac{1}{9}=0.11 \mathrm{M}$
Q. 4 [2.30 TO 3.00]
$\mathrm{B}+\mathrm{HA} \longrightarrow \mathrm{BH}^{+}+\mathrm{A}^{-}$
$0.1 \mathrm{M}, \mathrm{V} \mathrm{ml}$
$0.1 \mathrm{Vmmol} \quad 0.1 \mathrm{~V} \mathrm{mmol} \quad 0.1 \mathrm{~V} 0.1 \mathrm{~V}$

$$
\left[\mathrm{BH}^{+}\right]=\frac{0.1 \mathrm{~V}}{2 \mathrm{~V}}=0.5 \mathrm{M}
$$

pH at eq. $\mathrm{pt}=6$ to 6.28
$\mathrm{pH}=7-\frac{1}{2}\left[\mathrm{pK}_{\mathrm{b}}+\log 0.05\right]$
So $\mathrm{pK}_{\mathrm{b}}=2.30-2.80$
Possible

Solution 2

at $V=6 \mathrm{ml} \quad$ rxn is complete
So $V=3 \mathrm{ml} \quad$ is half of eq. pt
at which $\quad \mathrm{pH}=11$
$\mathrm{pOH}=(14-11) \quad=\mathrm{pK}_{\mathrm{b}}+\log 1$
$\mathrm{pK}_{\mathrm{b}}=3$
Q. $5 \quad$ [0.20]

For ppt, $\left[\mathrm{Zn}^{+2}\right]\left[\mathrm{S}^{-2}\right]=\mathrm{K}_{\text {sp }}$
$\left[\mathrm{S}^{-2}\right]=\frac{1.25 \times 10^{-22}}{0.05}$
$=2.5 \times 10^{-21} \mathrm{M}$
$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{-2}$
$\mathrm{K}_{\mathrm{Net}}=10^{-21}=\frac{\left[\mathrm{H}^{+}\right]^{2} \times 2.5 \times 10^{-21}}{0.1}$
$\left[\mathrm{H}^{+}\right]^{2}=\frac{1}{25}$
$\left[\mathrm{H}^{+}\right]^{2}=\frac{1}{5} \mathrm{M}=0.2 \mathrm{M}$

Thermodynamics

ELEMENTARY

Q. 1 (2)
Q. 2 (4)
Q. 3 (3)

Surface tension is an intensive property which do not depend upon the quantity of matter present in the system.
Q. 4 (3)
Q. 5 (2)

$$
\begin{aligned}
& \mathrm{W}=2.303 \mathrm{nRT} \log \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}} \\
& =2.303 \times 1 \times 8.314 \times 10^{7} \times 298 \log \frac{20}{10} \\
& =298 \times 10^{7} \times 8.314 \times 2.303 \log 2 .
\end{aligned}
$$

Q. 6 (3)

$$
\begin{aligned}
\mathrm{W} & =-\mathrm{P} \Delta \mathrm{~V}=-1 \times 10^{5}\left(1 \times 10^{-2}-1 \times 10^{-3}\right) \\
& =-1 \times 10^{5} \times 9 \times 10^{-3}=-900 \mathrm{~J}
\end{aligned}
$$

Q. 7 A

We have,
$\mathrm{W}=-2.303 \mathrm{nRT} \log \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
$=-2.303 \times 2 \times 2 \times 298 \times \log \frac{50}{15}$
$=-1426.87$ calories.
Q. 8 (2)
$\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{V}$.
Q. 9 (3)

At constant P or T
$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{nRT} \Rightarrow \Delta \mathrm{n}=\mathrm{n}_{\mathrm{p}}-\mathrm{n}_{\mathrm{R}}=2-4=-2$
$\therefore \Delta \mathrm{H}<\Delta \mathrm{U}$.
Q. 10 (3)

Here $\Delta \mathrm{n}=0$ so, $\Delta \mathrm{E}=\Delta \mathrm{H}$.
Q. 11 (3)
Q. 12 (4)

Heat is always flow from the higher to lower temperature.
Q. 13 (2)
(2) Solid \longrightarrow Gas, $\Delta \mathrm{S}$ is maximum.
Q. 14 (1)
Q. 15 (3)
Q. 16 (2)
Q. 17 (1)

When $\Delta \mathrm{H}=-v e, \Delta \mathrm{~S}=+v e$ and $\Delta \mathrm{G}=-v e$ than reaction is spontaneous .
Q. 18 (2) For spontaneous change $\Delta \mathrm{G}=-\mathrm{ve}$.
Q. 19 (4) Atequilibrium $\Delta \mathrm{G}=0$.
Q. 20 (2)
Q. 21 (4)

Heat of neutralisation between strong acid and a strong base is about -13.7 Kcal .
Q. 22 (4)
Q. 23 (2)

Effect of temperature in heat of reaction is given by Kirchoff's equation.
Q. 24 (2)
$78 g$ of benzene on combustion produces heat $=-3264.6 \mathrm{~kJ}$
$\therefore 39 \mathrm{~g}$ will produce $=\frac{-3264.6}{2}=-1632.3 \mathrm{~kJ}$.
Q. 25 (1)
$e q$. (i) $+e q$. (ii) gives the required result.
Q. 26 (1)

$$
\begin{align*}
& \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2} \quad \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}=-188 \mathrm{~kJ} / \mathrm{mole} . \\
& \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}=-286 \mathrm{~kJ} / \mathrm{mole} . \tag{ii}
\end{align*}
$$

eq. (i) - eq. (ii) $\times 2$ gives the required result.
Q. 27 (3)

Heats of combustions are always exothermic except oxidation of N as,

$$
\begin{aligned}
& \mathrm{N}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O} \quad \Delta \mathrm{H}=+\mathrm{ve} \\
& \mathrm{~N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO} \quad \Delta \mathrm{H}=+\mathrm{ve}
\end{aligned}
$$

Q. 28 (2)

Aim: $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$

$$
\begin{aligned}
\Delta \mathrm{H} & =\Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{CO}_{2}\right)-\left[\Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{CO})+\frac{1}{2} \Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{O}_{2}\right)\right] \\
& =-94.0-(-26.4)=-67.6 \mathrm{kcal} .
\end{aligned}
$$

Q. 29 (3)
$\mathrm{NH}_{4} \mathrm{OH}$ is a weak base. Heat of neutralisation < 13.7 kcal .
Q. 30 (1)

$$
\begin{aligned}
\Delta \mathrm{H}- & \Delta \mathrm{E}=\Delta \mathrm{nRT}=3 \times 8.314 \times 298 \\
& =-7432 \mathrm{~J}=-7.43 \mathrm{~kJ}
\end{aligned}
$$

Q. 31 (2)
$\Delta \mathrm{H}=+\mathrm{ve}$ for endothermic reaction.
Q. 32 (4)

Standard molar heat enthalpy $\left(\mathrm{H}^{\circ}\right)$ of a compound is equal to its standard heat of formation from most stable states of initial components.
Q. 33 (1)
$4 \mathrm{~g} \mathrm{H}_{2}=2$ moles. Bond energy for 1 mole of $\mathrm{H}_{2}=208 / 2=104 \mathrm{kcal}$.
Q. 34 (3)
Q. 6

Aim: $\frac{1}{2} \mathrm{H}_{2}+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{HCl}$
Q33
Q. 7
$\Delta \mathrm{H}=\sum$ B.E. $_{\cdot(\text { Products })}-\sum$ B.E. $_{(\text {Reactants })}$
$=$ B.E. $(\mathrm{HCl})-\left[\frac{1}{2}\right.$ B.E. $\left(\mathrm{H}_{2}\right)+\frac{1}{2}$ B.E. $\left.\left(\mathrm{Cl}_{2}\right)\right]$
$=-103-\left[\frac{1}{2}(-104)+\frac{1}{2}(-58)\right]$
$=-103-(-52-29)=-22 \mathrm{kcal}$.
Q. 35 (4)
$\frac{1}{2} \mathrm{H}_{2}+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{HCl}, \Delta \mathrm{H}=-90 \mathrm{KJ}$
$\therefore \Delta \mathrm{H}=\frac{1}{2} \mathrm{E}_{\mathrm{H}-\mathrm{H}}+\frac{1}{2} \mathrm{E}_{\mathrm{Cl}-\mathrm{Cl}}$
or $-90=\frac{1}{2} \times 430+\frac{1}{2} \times 240-\mathrm{E}_{\mathrm{HCl}}$
$\therefore \mathrm{E}_{\mathrm{H}-\mathrm{Cl}}=425 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Q. 36 (2)

When strong acid and strong base neutralize each other than the value of heat generated is about 13.7 kcal .

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (3)

Boiling point, $\mathrm{pH} \&$ density are intensive properties. Entropy is an extensive property.
Q. 2 (2)
Q. 3 (4)

For isothermal process involving ideal gas
$\Delta T=\Delta E=\Delta H=0$
Q. $4 \quad \mathrm{w}=-\mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$\mathrm{T}_{2}=150 \mathrm{~K}$
Q. 5
(2)
$\mathrm{C}_{\mathrm{P}}=\frac{\mathrm{q}}{\mathrm{n} \Delta \mathrm{T}}$
$\Delta \mathrm{T}=0$
$\mathrm{C}_{\mathrm{P}}=\infty$
$\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{n}$ RT
Given
$\Delta \mathrm{H}=-651 \times 10^{3} \mathrm{cal} ., \mathrm{R}=2 \mathrm{cal}$,
$\mathrm{T}=290 \mathrm{~K}$ and $\Delta \mathrm{n}=6+6-6=6$
$\therefore \Delta \mathrm{E}=-651 \times 10^{3}-6 \times 2 \times 290$
$=-654480 \mathrm{cal}=-654.5 \mathrm{Kcal}$
Q. 8 (1)
Q. 9 (2)
Q. 10 (2)
Q. 11 (4)
$\Delta \mathrm{n}_{\mathrm{g}}=0$
$\Delta \mathrm{H}=\Delta \mathrm{U}$
$\Delta \mathrm{U}=-185 \mathrm{~kJ} / \mathrm{Mole}$
For three moles $=-185 \times 3=-555$
Q. 12 (4)
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HCl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
$\Delta n_{g}=-1$
HCl is limiting reagent
$\Delta \mathrm{U}=\Delta \mathrm{H}-\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
$=-185+\left(1 \times 8.314 \times 10^{-3} \times 300\right)$
$=-69.8 \mathrm{~kJ}$
For two mole of $\mathrm{HCl}=-69.8 \times 2=-139.6 \mathrm{~kJ}$
Q. 13 (2)
$\mathrm{W}=-100 \mathrm{~J}, \mathrm{q}=150 \mathrm{~J}$
$\because \mathrm{q}=\Delta \mathrm{E}-\mathrm{W}$
$\therefore 150=\Delta \mathrm{E}-(-100)$
$=150-100$
$\Delta \mathrm{E}=50 \mathrm{~J}$
Q. 14 (1)

$$
\begin{aligned}
& \mathrm{W}=-\mathrm{P} \Delta \mathrm{~V} \\
& =-1.5(1-0.5) \\
& =-0.75 \text { atm-litre }=-0.75 \times 101 \text { Joule } \\
& \mathrm{q}=200 \mathrm{~J} \\
& \because \mathrm{q}=\Delta \mathrm{E}-\mathrm{W} \\
& 200=\Delta \mathrm{E}-(-0.75 \times 101) \\
& \Delta \mathrm{E}=124.25 \text { Joule }
\end{aligned}
$$

Q. 15 (2)
$\Delta \mathrm{S}_{\mathrm{f}}=\frac{\Delta \mathrm{H}_{\mathrm{f}}}{\mathrm{T}}=\frac{6025}{273}$
$=22.1 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Q. 16 (3)
$\Delta \mathrm{S}=\mathrm{nC}_{\mathrm{v}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$

$$
=2 \times \frac{3}{2} \mathrm{R} \ln \frac{573}{473}
$$

Q. 17 (3)
$\Delta S_{\text {vap }}=+\frac{300 \times 30}{300}=-30 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$
$\Delta \mathrm{S}_{\text {cond }}=-30 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
Q. 18 (1)
$\Delta \mathrm{H}=-3600 \mathrm{cal}$
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$\Delta \mathrm{G}=-600 \mathrm{cal}$
Q. 19 (1)
$\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{k}$
Q. 20 (4)
$\Delta \mathrm{H}^{\mathrm{o}}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}$ (products) $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}$ (Reactants)
$=\left[\Delta \mathrm{H}_{\mathrm{f}_{\left(\mathrm{H}_{2} \mathrm{O}\right)}^{0}}+\Delta \mathrm{H}_{\mathrm{f}(\mathrm{CO})}^{0}\right]-\left[\Delta \mathrm{H}_{\mathrm{f}_{\left(\mathrm{CO}_{2}\right)}^{0}}^{0}+\Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{H}_{2}\right)}^{0}\right]$
$\Delta \mathrm{H}^{\mathrm{o}}=[-241.8-110.5]-[-393.5+0]$
$=-352.3+393.5=+41.2 \mathrm{KJ}$
Q. 21 (4)
$\Delta \mathrm{r}^{\mathrm{H}}=0$;
If all the reactants \& products have zero $\Delta \mathrm{f} \mathrm{H}$.
Q. 22 (2)
$\mathrm{H}_{2}+\mathrm{O}_{2} \mathrm{H}_{2} \mathrm{O}$ (l)
$\mathrm{H}-\mathrm{H}+0=0 \mathrm{H}_{2} 0(\mathrm{~g}) \mathrm{H}_{2} 0(\mathrm{l})$
$X=X_{1}+-2 X_{3}-X_{4}$
Q. 23 (1)
$\mathrm{H}^{+}=1 \mathrm{Mole} ; \mathrm{OH}^{-}=0.75 \mathrm{Mole}$
$\Delta \mathrm{H}=0.75(-57)$
Hear enolved $=57 \frac{3}{4}$
Q. 24 (2)
Q. 25 (3)
Q. 26 (4)

$$
\begin{aligned}
& -25=(4 x+y)-(3 x+84+103) \\
& x+y=162 \\
& y=57.85
\end{aligned}
$$

Q. 27 (4)
Q. 28 (2)
Q. 29 (3)
Q. 30 (3)
Q. 31 (1)
Q. 32 (4)
Q. 33 (2)
Q. 34 (2)
Q. 35 (3)
Q. 36 (1)
Q. 37 (3)
Q. 38 (4)
Q. 39 (2)
Q. 40 (2)
Q. 41 (1)
Q. 42 (2)
Q. 43 (1)
Q. 44 (1)

JEE-ADVANCED
 OBJECTIVE QUESTIONS

Q. 1
(C)

Work done in the cyclic process
= Area bounded (ABCA)
$=\frac{1}{2} \times \mathrm{AC} \times \mathrm{AB}$
$=\frac{1}{2} \times 2 \mathrm{~V}_{1} \times 3 \mathrm{P}_{1}=3 \mathrm{P}_{1} \mathrm{~V}_{1}$
Q. 2 (A)

Magnitude of work $=\mathrm{A}=\mathrm{P}_{1} \mathrm{~V}_{1}+\frac{1}{2} \times \mathrm{P}_{1} \times 6 \mathrm{~V}_{1}$

Q. 3 (C)

Equation of process
$\frac{\log \mathrm{P}-2.38}{\log \mathrm{~V}-1.10}=\frac{2.10-2.38}{1.30-1.10}=\frac{-0.28}{0.20}=\frac{-7}{5}$
$\Rightarrow(\log \mathrm{P}-2.38) \times 5=-7(\log \mathrm{~V}-1.1)$
$\Rightarrow 5 \log \mathrm{P}+7 \log \mathrm{~V}=19.60$
$\Rightarrow \log \mathrm{P}^{5}+\log \mathrm{V}^{7}=19.60$
$\mathrm{P}^{5} \mathrm{~V}^{7}=\operatorname{antilog}(19.60)=$ constant
or $\mathrm{PV}^{1.4}=$ constant
$\because \gamma=1.4$ - diatomic \& adiabatic
Q. 4 (A)
$|\mathrm{w}|=\pi \mathrm{ab}=\frac{22}{7} \times 7 \times 5=110$ bar lit. $=11000 \mathrm{~J}=11 \mathrm{~kJ}$
Final Answer $=-11$
Q. 5 (A)

$$
\mathrm{w}=\text { zero }
$$

Since the area of both triangle is equal. Also work done in one is positive while in other is negative.
Q. 6 (C)
$\mathrm{W}=-\mathrm{P}_{\mathrm{ext}}\left[\mathrm{V}_{2}-\mathrm{V}_{1}\right]$
$\mathrm{W}_{1}=-2[16-4] \times 100=-2400 \mathrm{~J}$
$\mathrm{W}_{2}=-[32-16]=-16 \times 100=-1600 \mathrm{~J}$
-4000
$\mathrm{q}=-\mathrm{W}=4000 \mathrm{~J}$
Q. 7 (D)
$\mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=-\mathrm{P}_{\text {ext }} \times \mathrm{nR}\left[\frac{\mathrm{T}_{2}}{\mathrm{P}_{2}}-\frac{\mathrm{T}_{1}}{\mathrm{P}_{1}}\right]$
$\mathrm{T}_{2}=\frac{9}{7} \mathrm{~T}_{1}$
$\mathrm{w}=2 \times \frac{5}{2} \times \mathrm{R}\left[\frac{9}{7} \mathrm{~T}_{1}-\mathrm{T}_{1}\right]$

$$
=500 \mathrm{R}
$$

Q. 8 (D)
$\mathrm{C}_{\mathrm{v}}=\frac{\Delta \mathrm{U}}{\mathrm{n} \Delta \mathrm{T}}, \mathrm{n}=\frac{4.48}{22.4}=0.2$
$=\frac{12}{0.2 \times 15}=4 \mathrm{cal}$
$\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\mathrm{v}}+\mathrm{R}=4+2=6 \mathrm{cal}$

Q. 9 (C)

Total cubes $=\mathrm{n}$
Moles of $\mathrm{H}_{2} \mathrm{O}=\mathrm{n} \times \frac{9}{18}=0.5 \mathrm{n}$
Heat released by liquid = Heat absorbed by ice
$\mathrm{n} \times 0.5 \times 6=\frac{500}{18} \times 75.6 \times 20 \times 10^{-3}$
$3 n=42$
$\mathrm{n}=14$
Q. 10 (A)

As container is insulated

$$
\begin{aligned}
& \mathrm{q}=0 \\
& \mathrm{q}_{1}+\mathrm{q}_{2}=0 \\
& \mathrm{n}_{1} \mathrm{C}_{\mathrm{m}}\left(\mathrm{~T}-\mathrm{T}_{1}\right)+\mathrm{n}_{2} \mathrm{C}_{\mathrm{m}}\left(\mathrm{~T}-\mathrm{T}_{2}\right)=0 \\
& \mathrm{~T}=\frac{\mathrm{n}_{1} \mathrm{~T}_{1}+\mathrm{n}_{2} \mathrm{~T}_{2}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)}=\frac{\left(\mathrm{P}_{1} \mathrm{~V}_{1}+\mathrm{P}_{2} \mathrm{~V}_{2}\right) \mathrm{T}_{1} \mathrm{~T}_{2}}{\left(\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}+\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1}\right)}
\end{aligned}
$$

Q. 11 (D)
$\Delta \mathrm{U}=100-\frac{209}{4.18}=50 \mathrm{cal}$
$\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}$
$C_{v, m}=\frac{5}{2} R$
$\operatorname{ndT}=\frac{20}{\mathrm{R}}$
$\mathrm{q}=\mathrm{nC}_{\mathrm{m}} \mathrm{dT}$
$C_{m}=\frac{100 R}{20}=5 R$
Q. 12 (B)

Heat released to cool 500 g water from $20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$,
$\mathrm{q}=\mathrm{ms} \Delta \mathrm{T}$
$=500 \times 4.18 \times 20=41800 \mathrm{~J}=41.8 \mathrm{~kJ}$
Number of moles of water (ice) that will melt to absorb 41.8 kJ
$=\frac{41.8}{6.02} \approx 7$
\therefore Number of cubes of ice that will melt $=7$
Q. 13 (B)
$2 \mathrm{~A}_{2}(\mathrm{~g})+5 \mathrm{~B}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~A}_{2} \mathrm{~B}_{5}(\mathrm{~g}) ; \Delta \mathrm{H}=-50160 \mathrm{~J}$
$\Delta \mathrm{n}=2-(5+2)=-5 \mathrm{~mol}$.

$$
\begin{aligned}
& \Delta \mathrm{H}=\Delta \mathrm{E}+(\Delta \mathrm{n}) \mathrm{RT} \\
& -50160=\Delta \mathrm{E}+(\Delta \mathrm{n}) \mathrm{RT} \\
& \Delta \mathrm{E}=-50160-(-5)(8.314)(300) \\
& =-50160+12471=-37689 \mathrm{~J}
\end{aligned}
$$

Q. 14 (B)
$\Delta \mathrm{U} \quad=\mathrm{q}+\mathrm{w}$

$$
\begin{aligned}
& =(40 \times 200)+(-2 \times 10 \times 100) \\
& =6000 \text { J Ans. }
\end{aligned}
$$

Q. 15 (B)
$\Delta \mathrm{S}_{\text {condensation }}=\frac{-\Delta \mathrm{H}_{\mathrm{vap}}}{\mathrm{T}}=\frac{-540 \times 18}{373}$
$\Delta \mathrm{S}_{\text {cooling }}=+\mathrm{nC}_{\mathrm{p}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)=18 \ln \left(\frac{273}{373}\right)$
$\Delta \mathrm{S}_{\text {fusion }}=\frac{-80 \times 18}{273}$
$=-\left[18\left(\frac{80}{273}+\frac{540}{373}\right)+\left(18 \ln \frac{273}{373}\right)\right]$
$=-18\left(\frac{80}{273}+\frac{540}{373}+\ln \frac{373}{273}\right)$
$\Rightarrow 36.95 \mathrm{cal} /{ }^{\circ} \quad$ Ans.

Q. 16 (C)

$$
\begin{align*}
0.40=\mathrm{aT}_{1}^{3}+\mathrm{bT}_{1} & \Rightarrow \quad 0.40=\mathrm{a} \times(1000)+\mathrm{b} \times 10 \\
& \Rightarrow \quad 0.4=1000 \mathrm{a}+10 \mathrm{~b} \tag{1}
\end{align*}
$$

$0.92=\mathrm{aT}_{2}^{3}+\mathrm{bT}_{2} \Rightarrow \quad 0.92=\mathrm{a} \times 8000+20 \mathrm{~b}$

On solving

$$
\begin{align*}
& 0.12=6000 \mathrm{a} \quad ; \quad \mathrm{a}=2 \times 10^{-5} \tag{2}\\
& 0.40=2 \times 10^{-5} \times 1000+\mathrm{b} \times 10 \\
& \therefore \mathrm{~b}=0.038 \\
& \mathrm{~S}_{\mathrm{m}}=\int \frac{\mathrm{aT}^{3}+\mathrm{bT}}{\mathrm{~T}} \cdot \mathrm{dT}
\end{align*}
$$

$$
\Rightarrow \quad \frac{\mathrm{a}\left[\mathrm{~T}_{2}^{3}-\mathrm{T}_{1}^{3}\right]}{3}+\mathrm{b}\left[\mathrm{~T}_{2}-\mathrm{T}_{1}\right]
$$

$$
\Rightarrow \quad \frac{2 \times 10^{-5} \times(8000-0)}{3}+\mathrm{b}(20)
$$

$$
\Rightarrow \frac{2 \times 10^{-5} \times 8000}{3}+0.038 \times(20)
$$

$$
\Rightarrow \quad 0.053+0.76 \quad \Rightarrow \quad 0.813 \mathrm{~J} / \mathrm{K}-\mathrm{mol} \quad \mathbf{Q . 2 1} \quad \text { (C) }
$$

Q. 17 (D)

$$
\begin{aligned}
& \\
& \mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}_{\mathrm{h}}-\mathrm{T}\right)=\mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{c}}\right) \quad \Rightarrow \quad \mathrm{T}=\frac{\mathrm{T}_{\mathrm{c}}+\mathrm{T}_{\mathrm{h}}}{2} \quad=-33.32 \mathrm{KJ} \\
& 2
\end{aligned}
$$

$$
; \quad \because \Delta \mathrm{S}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{\mathrm{C}_{\mathrm{v}} \cdot \mathrm{dt}}{\mathrm{~T}}
$$

$\Delta \mathrm{S}_{\mathrm{c}}=\mathrm{C}_{\mathrm{v}} \ln \frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}} \quad \& \Delta \mathrm{~S}_{\mathrm{h}}=\mathrm{C}_{\mathrm{v}} \ln \frac{\mathrm{T}}{\mathrm{T}_{\mathrm{h}}}$
Total $\Delta \mathrm{S}=\mathrm{C}_{\mathrm{v}} \ln \frac{\left(\mathrm{T}_{\mathrm{c}}+\mathrm{T}_{\mathrm{h}}\right)}{2 \mathrm{~T}_{\mathrm{c}}}+\mathrm{C}_{\mathrm{v}} \ln \frac{\left(\mathrm{T}_{\mathrm{c}}+\mathrm{T}_{\mathrm{h}}\right)}{2 \mathrm{~T}_{\mathrm{h}}}=$

$$
\mathrm{C}_{\mathrm{v}} \ln \frac{\left(\mathrm{~T}_{\mathrm{c}}+\mathrm{T}_{\mathrm{h}}\right)^{2}}{4 \mathrm{~T}_{\mathrm{c}} \cdot \mathrm{~T}_{\mathrm{h}}}
$$

Q. 18 (B)

$$
\eta=1-\frac{300}{500}
$$

$$
=1-0.6-0.4
$$

$$
\% \eta=40=\frac{|\mathrm{W}|}{\mathrm{q}} \times 100
$$

$$
\mathrm{w}=\frac{40}{100} \times 2=0.8 \mathrm{Kcal}
$$

Q. 19 (D)
$\Delta \mathrm{S}=\mathrm{nR} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
$\mathrm{V}_{2}=40$
$\mathrm{V}_{1}=20$
$\Delta \mathrm{S}=2 \times 2 \ln 2$
$=4 \ln 2=2.77 \mathrm{cal}$.
Q. 20 (C)
$\Delta \mathrm{S}($ system $)=\mathrm{nR} \ln \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}} \quad=10 \times 8 \times \ln 2=80 \times 0.7=56$

$$
\Delta S_{\text {surr }}=-\frac{q_{\text {irr }}}{T}=\frac{W_{\text {irr }}}{T}
$$

Q. 22 (A)
$\Delta \mathrm{G}^{\mathrm{o}}=-2.303 \mathrm{RT} \log \mathrm{Kp}$
$\mathrm{K}_{\mathrm{P}}=\mathrm{P}=10^{-5.44}$
$\Delta \mathrm{G}^{\mathrm{o}}=2 \times \Delta \mathrm{G}^{\mathrm{o}} \mathrm{NH}_{3}-\Delta \mathrm{G}^{\mathrm{o}} \mathrm{N}_{2}-\left(\Delta \mathrm{G}^{\mathrm{o}} \mathrm{H}_{2} \times 3\right)$
K_{P}
Q. 23 (D)
$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+2.303 \mathrm{RT} \log \mathrm{Q}$
$\mathrm{Q}=\frac{(0.02)^{2}}{1 \times 3^{3}}$
$=-60.5 \mathrm{~kJ} / \mathrm{Mol}$
Q. 24 (C)
$\Delta \mathrm{G}^{\mathrm{o}}=-2.303 \mathrm{RT} \log \mathrm{Keq}$
$=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{P}}$
$\mathrm{P}_{\mathrm{NH}_{3}}=\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}=\frac{\mathrm{x}}{2}$ bar $=-\mathrm{RT} \ln \left(\frac{\mathrm{x}}{2}\right)^{2}=-2 \mathrm{RT}(\ln$
$X-\ln 2)$
Q. 25 (A)
$\Delta \mathrm{G}^{\mathrm{o}}=2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{C}}$
$460.6=-2.303 \times 2 \times 900 \log K_{C}$
$\log \mathrm{K}_{\mathrm{C}}=-\frac{1}{9}$
$\log \frac{[\mathrm{C}]_{\mathrm{eq}}^{2}}{[\mathrm{~A}]_{\mathrm{eq}}^{2}}=\frac{1}{9} \quad \log \frac{[\mathrm{C}]_{\mathrm{eq}}}{[\mathrm{A}]_{\mathrm{eq}}}=-\frac{1}{18}=$
$\begin{aligned} & 5.56 \times 10^{-2} \\ & =[\mathrm{B}]_{\mathrm{eq}} \text {) }\end{aligned}$ (at equilibrium $[\mathrm{CC}]_{\mathrm{eq}}=[\mathrm{D}]_{\mathrm{eq}}[\mathrm{A}]_{\mathrm{eq}}$
Q. 26 (B)
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3} ;$
$\Delta \mathrm{H}_{1}=\left(\mathrm{BE}_{\mathrm{C}=\mathrm{C}}+\mathrm{BE}_{\mathrm{H}-\mathrm{H}}\right)-\left(2 \mathrm{BE}_{\mathrm{C}-\mathrm{H}}+\mathrm{BE}_{\mathrm{C}-\mathrm{C}}\right)$
$\stackrel{\mathrm{CH}_{2}-\mathrm{CH}_{2}}{\mathrm{CH}_{2}}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
$\Delta \mathrm{H}_{2}=\left(\mathrm{BE}_{\mathrm{C}-\mathrm{C}}+\mathrm{BE}_{\mathrm{H}-\mathrm{H}}\right)-\left(2 \times \mathrm{BE}_{\mathrm{C}-\mathrm{H}}\right)$
$\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}=2 \mathrm{BE}_{\mathrm{C}-\mathrm{C}}-\mathrm{BE}_{\mathrm{C}=\mathrm{C}}$
Q. 27 (D)
$\mathrm{CaO}_{(\mathrm{s})}+3 \mathrm{C}_{(\mathrm{s})} \mathrm{CaC}_{2}+\mathrm{C}_{\mathrm{o}}$
$\Delta \mathrm{r}=-14-26+152=112$ per mole
for $1.28 \mathrm{Kg}=11220=2240 \mathrm{Kcal}$

$$
\begin{aligned}
& \text { Q. } 28 \text { (A) } \\
& \mathrm{HCl}=\mathrm{NaOH}==510^{-} \text {Mole } \\
& \mathrm{q}=4.23=1.26 \mathrm{KJ} \text {. } \\
& \text { per mole } \\
& \mathrm{KJ}=2.510^{2} \mathrm{KJ} / \text { Mole } \\
& \text { C }-\mathrm{E} \text { bond has highest bond energy ; it means that the } \\
& \text { covalent bond } \mathrm{C}-\mathrm{E} \text { will be strongest. Smaller is the } \\
& \text { size of atom, stronger is the covalent bond.] } \\
& \text { Q. } 30 \text { (D) } \\
& \because 58 \mathrm{~g} \text { isobutane provides energy } \\
& =2658 \mathrm{~kJ} \\
& \therefore 11.2 \times 10^{3} \mathrm{~g} \text { isobutane provides energy } \\
& =\frac{2658 \times 11.2 \times 10^{3}}{58} \mathrm{~kJ}=513268.9 \mathrm{KJ}
\end{aligned}
$$

The daily requirement of energy $=15000 \mathrm{~kJ}$
\therefore cylinder will last $=\frac{513268.9}{15000}=34$ days
Q. 31 (C)

HA BOH
$\mathrm{H}^{+} \mathrm{A}^{-}+\mathrm{B}^{+} \mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{BA}$
$-56.1=$ ion $^{\mathrm{H}}-57.3$
$1.5 \alpha=1.2=0.8$
Q. 32 (C)

C (graphite) (diamond) ; $\mathrm{H}_{1}-\mathrm{H}_{2}$
$\mathrm{H}_{1}-\mathrm{H}_{2}=\left(6 \mathrm{~g}^{\circ}\right.$ Mole $)$ $=0.95$
Q. 33 (A)
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) 2 \mathrm{NCl}_{3}(\mathrm{~g}) ; \mathrm{r}^{\mathrm{H}}$
above eq ${ }^{\mathrm{n}}$ can become
$2 R x^{n}+R x^{n}-3 R x^{n}$
${ }_{\mathrm{f}} \mathrm{H}\left(\mathrm{NCl}_{3}, \mathrm{~g}\right)={ }_{\mathrm{r}} \mathrm{H}$
$=\left[-2 \mathrm{H}_{1}+\mathrm{H}_{2}-3 \mathrm{H}_{3}\right]$
$=-\mathrm{H}_{1}+-\mathrm{H}_{3}$
Q. 34 (C)

By Rx ${ }^{\mathrm{n}}1-\mathrm{Rx}^{\mathrm{n}}2$
$4 \mathrm{AuBr}_{4}+4 \mathrm{HCl} \mathrm{HA} 4 \mathrm{Cl}_{4}+4 \mathrm{HBr}$
$\Delta \mathrm{H}=-28+36.8=8.8 \mathrm{Kcal} / \mathrm{mol}$
But $\Delta \mathrm{H}=0.44 \mathrm{Kcal}$
$==0.05$
$\%$ dissociation $=5 \%$
Q. 35 (A)

By
Eq 2 -Eq.... 1
t-2-butene 1-butene
$\mathrm{H}_{2}-\mathrm{H}_{1}>0$
By
Eq 6 - Eq.... 7
t-2-butene 1-butene
$\mathrm{H}_{2}-\mathrm{H}_{1}>0$
$\mathrm{H}=-647+649.8=2.8$
$\mathrm{H}_{2}-\mathrm{H}_{1}=2.8$ and
$9 \mathrm{H}_{1}+5 \mathrm{H}_{2}=0$
$\mathrm{H}_{2}=1.0$ and $\mathrm{H}_{2}=1.8$
Q. 36 (D)
$\mathrm{H}_{2}+\mathrm{O}_{2} \mathrm{OH}_{(g)} ; 42$
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2_{(g)}} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} ;-242$
$\mathrm{H}_{2_{(g)}} 2 \mathrm{H}_{(\mathrm{g})} ; 436$
$\mathrm{O}_{2_{(\mathrm{g})}} \mathrm{O}_{(\mathrm{g})} ; 495$
(a) $\mathrm{Eq}-3+\mathrm{Eq}-4 \mathrm{Eq} 2$
$242+436+=925.5$; True
(b) $\mathrm{Eq}^{\mathrm{n}} 3+\mathrm{Eq}^{\mathrm{n}} 4-\mathrm{Eq}^{\mathrm{n}} 1$
$\Delta \mathrm{H}=-42+$, false
(c) $\mathrm{H}_{2} \rightarrow 2 \mathrm{H} ; \Delta_{\mathrm{r}} \mathrm{H}=2{ }_{\mathrm{f}} \mathrm{H}(\mathrm{H}, \mathrm{g})$

$$
\mathrm{f}_{\mathrm{H}}^{\mathrm{H}(\mathrm{H}, \mathrm{~g})}==218 ; \text { False }
$$

(d) First reaction is $\Delta_{\mathrm{r}} \mathrm{H}=\Delta_{\mathrm{f}} \mathrm{H}(\mathrm{OH}, \mathrm{g})$ $=42$; True
Q. 37 (C)
$+3 \mathrm{H}_{2}$
$\Delta_{\mathrm{r}} \mathrm{H}=\Delta_{\mathrm{f}} \mathrm{H}$ (cyclohexane) $\Delta_{\mathrm{f}} \mathrm{H}$ (Benzene)

$$
=-156-49
$$

$\Delta_{\mathrm{r}} \mathrm{H}=3(-19)+$ R.E
R. $\mathrm{E}=-156-49+(3119)=152 \mathrm{KJ} /$ Mole
Q. 38 (B)
Q. 39 (A)
Q. 40 (B)
Q. 41 (D)
Q. 42 (B)
Q. 43 (C)
Q. 44 (C)
Q. 45 (A)
Q. 46 (D)
Q. 47 (B)

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (A)

$$
\text { (a) } \quad \begin{aligned}
& \mathrm{y}=\mathrm{mx}+\mathrm{C} \\
& 10=\mathrm{m} \times 300+\mathrm{C} \\
& 15=\mathrm{m} \times 600+\mathrm{C} \\
&------------------ \\
& 5=300 \mathrm{~m}
\end{aligned}
$$

	$\begin{aligned} & \mathrm{m}=\frac{1}{60}, \quad \mathrm{c}=5 \\ & \mathrm{~V}=\frac{1}{60} \mathrm{~T}+5 \quad \quad \mathrm{w}=-\int \mathrm{P} \Delta V \end{aligned}$		$\Rightarrow \mathrm{E}_{\mathrm{U}-\mathrm{F}}=106+\frac{1}{2} \times 37$
			$\begin{aligned} & =124.5 \mathrm{Kcal} / \mathrm{Mole} \\ & \text { or } \\ & 521 \mathrm{~kJ} / \mathrm{Mole} \end{aligned}$
	$P=60 R-\frac{300 R}{V}$	Q. 7	(C, D) Enthalpy of formation : follow the definition
J$w=-\int_{10}^{15}\left(60 R-\frac{300 R}{V}\right) d V=-1496.52 \quad \text { Q.8 } \quad \begin{aligned} & \text { (A, C, D) } \\ & C \text { (diamond) } ; \Delta_{\mathrm{t}} \mathrm{H} \neq 0 \end{aligned}$			
	$\text { (b) } \quad \begin{aligned} & \Delta \mathrm{U}=\mathrm{q}+\mathrm{w} \quad \text { or } \quad \mathrm{q}=\Delta \mathrm{U}-\mathrm{w} \\ & \Delta \mathrm{U}=\mathrm{C} \Delta \mathrm{v}=374.13 \\ & \mathrm{q}=374.13+1496.525=5237.82 \mathrm{~J} \end{aligned}$	Q. 9	(A, B, C, D) Solid \longrightarrow liquid Endothermic ; $\Delta \mathrm{H}>0$
	(c) $\Delta \mathrm{H}=\frac{5}{2} \times \mathrm{R} \times 300$	Q. 10	(A, C, D)
	(d) $\Delta \mathrm{S}=+\mathrm{ve}$	Q. 11	(C,D)
Q. 2	(A,B,C) G <0 for spontaneous (D) Assumed to zero not unity		Arrhenius equation ; $\mathrm{K}=\mathrm{Ae}^{-\mathrm{EaRT}}$ Kirchaff's Equation; $\mathrm{d}\left(\Delta_{\mathrm{r}} \mathrm{H}\right)=\Delta_{\mathrm{r}} \mathrm{C}_{\mathrm{p}} \mathrm{dT}$
Q. 3	(B,C,D)		Comprehension \# 01 (Q. No. 12 to 16)
Q. 4	($\mathrm{A}, \mathrm{B}, \mathrm{C}$)	Q. 12	(A)
	$\begin{aligned} & P_{\text {white }}<P_{\text {red }}(\text { Stability }) \\ & \Rightarrow \text { Exothermic } \end{aligned}$	Q. 13	(B)
		Q. 14	(B)
Q. 5	$3 \mathrm{UO}_{2}+\mathrm{O}_{2} \longrightarrow \mathrm{U}_{3} \mathrm{O}_{8}$	Q. 15	(A)
	$-76.01=-853.5-\left(3 \times \Delta_{\mathrm{t}} \mathrm{H}\left(\mathrm{UO}_{2}\right)\right.$	Q. 16	(A)
	$\begin{aligned} & \Rightarrow \Delta_{\mathrm{t}} \mathrm{H}=\frac{3}{3} \\ & =-259.16 \mathrm{Kcal} / \mathrm{Mole} \end{aligned}$	12	Stable state had zero standard molar enthalpy
	$=-259.16 \mathrm{Kcal} / \mathrm{Mole}$	13	$\mathrm{N}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO} ; \Delta_{\mathrm{r}} \mathrm{H}>\mathrm{O}$
Q. 6	$\begin{aligned} & (\mathrm{A}, \mathrm{C}) \\ & \mathrm{UF}(\mathrm{~g}) \longrightarrow \mathrm{U}(\mathrm{~g})+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g}) \end{aligned}$	14	$\mathrm{N}_{2}+2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2} ; \Delta_{\mathrm{r}} \mathrm{H}>\mathrm{O}$ Endothermic reactions are favourable High temperature.
	$\begin{aligned} \Delta_{\mathrm{r}} \mathrm{H} & =\Delta_{\mathrm{t}} \mathrm{H}(\mathrm{U}, \mathrm{~g})-\Delta_{\mathrm{t}} \mathrm{H}(\mathrm{UF}, \mathrm{~g}) \\ & =128-22=106 \end{aligned}$ or		(Amorphous) $+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} ;-97.6$ (diamond) \longrightarrow (amorphous) ; $\Delta_{\mathrm{r}} \mathrm{H}=-94.3+97.6=3.3 \mathrm{KCal} / \mathrm{Mole}$
	$\Delta_{\mathrm{r}} \mathrm{H}=\mathrm{E}_{\mathrm{UF}-\mathrm{F}}-\frac{1}{2} \mathrm{E}_{\mathrm{F}-\mathrm{F}}=106$		for $6 \mathrm{~g} \mathrm{C} \equiv \frac{1}{2}$ Mole C

$15 \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Rightarrow 18 \times 0.62778=\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{g}\right)-\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)$
$=\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{g}\right)+68.3$
$\Rightarrow \Delta_{\mathrm{f}} \mathrm{H}_{\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{g}\right)}=-68.3+11.3$
$=-57.0 \mathrm{KCal}$
$16 \quad \mathrm{I}_{2}(\mathrm{~s}) \longrightarrow \mathrm{I}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}=\Delta \mathrm{C}_{\mathrm{p}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$\Delta H_{2}-6.096=(0.031-0.055) \frac{50}{1000} \times 254$
$\Delta \mathrm{H}_{2}=-0.3048+6.092$
$=5.78$
Comprehension \# 02 (Q. No. 17 to 20)
Q. 17 (B)
Q. 18 (A)
Q. 19 (A)
Q. 20 (C)

Comprehension \# 3 (Q. No. 21 to 24)

Q. 21 (A)
Q. 22 (B)
Q. 23 (B)
Q. 24 (A)

1 True 2 True 3 True 4 True 5 False

22

$\mathrm{E}_{\mathrm{C}-\mathrm{H}}=\frac{360}{4}=90$

$\Rightarrow \mathrm{E}_{\mathrm{C}-\mathrm{C}}=80$
Q. 27 (B)

Acetic acid ; weak acid (Less than 13.7)
And HF is the exceptional case having langer value for Heat of neupralization than 13.7

26 (i) True
(ii) Due to cont. volume it measure $\Delta \mathrm{U}$
(iii) $\Delta \mathrm{n}_{\mathrm{g}}=0 \Rightarrow \Delta \mathrm{H}=\Delta \mathrm{U}$
(iv) False (due to involvement of R.E)
$27 \quad$ Case $\mathrm{I} ; \mathrm{H}^{+}=0.1 \times 100 \times 2=20 \mathrm{~m}$. eq.
$\mathrm{OH}^{-}=0.1 \times 100 \times 2=20 \mathrm{~m}$. .eq.
Case II ; $\mathrm{H}^{+}=50 \times 0.1 \times 2=10 \mathrm{~m} . \mathrm{eq}$.
$\mathrm{OH}^{-}=100 \times 0.1=10 \mathrm{~m} . \mathrm{eq}$.
$\Rightarrow 2 \Delta \mathrm{H}_{\mathrm{II}}=\Delta \mathrm{H}_{\mathrm{I}}$
$\Delta \mathrm{H}_{\mathrm{I}}=274 \mathrm{cal} ; \Delta \mathrm{H}_{\mathrm{II}}=137$
$\Delta \mathrm{T}_{\mathrm{I}}=\Delta \mathrm{T}_{\text {II }}$ (Because amount of substasace in case I is double than case II)
Q. 28
$\mathrm{A} \rightarrow(\mathrm{P}, \mathrm{R}), \mathrm{B} \rightarrow(\mathrm{Q}, \mathrm{S}), \mathrm{C} \rightarrow(\mathrm{Q}, \mathrm{S}), \mathrm{D} \rightarrow(\mathrm{Q}, \mathrm{S})$
If $\Delta n_{g}>0: \Delta S>0$
Q. $29 \quad \mathrm{~A} \rightarrow(\mathrm{P}, \mathrm{S}), \mathrm{B} \rightarrow(\mathrm{Q}), \mathrm{C} \rightarrow(\mathrm{R})$

$$
\begin{aligned}
& \text { Kircaff's equation } \\
& \qquad \begin{array}{l}
\mathrm{d}\left(\Delta_{\mathrm{r}} \mathrm{H}\right)=\Delta_{\mathrm{r}} \mathrm{C}_{\mathrm{p}} \mathrm{dt} \\
\Rightarrow \Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{ngRT} \\
\Rightarrow \\
\Rightarrow \mathrm{~s}=\frac{\mathrm{q}_{\mathrm{rev}}}{\mathrm{~T}}
\end{array}
\end{aligned}
$$

NUMERICAL VALUE BASED

Q. 1 [6]

$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta(\mathrm{PV})$
$\Rightarrow \Delta \mathrm{H}=40+\left(\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}\right)=40+(5 \times 6-2.5 \times 4)=40$
$+20=60=10 x$
$\Rightarrow x=6$
Q. 2 [9]
$\mathrm{q}=\Delta \mathrm{U}-\mathrm{w}$
-w is work done by the system
$\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}$
$=5+4=9$
Q. 3 [0]
$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$\Delta \mathrm{n}_{\mathrm{g}}=(3-3)=0$
Q. 4 [4]
$\mathrm{P}^{3}=$ constant $\Rightarrow\left(\mathrm{P} / \mathrm{P}^{\prime}\right) \times\left(\mathrm{V} / \mathrm{V}^{\prime}\right)^{3}=1 \Rightarrow\left(\mathrm{P} / \mathrm{P}^{\prime}\right)=\left(\mathrm{V}^{\prime} /\right.$
V) ${ }^{3}$
$\Rightarrow\left(\mathrm{P} / \mathrm{P}^{\prime}\right)=\left(\mathrm{d} / \mathrm{d}^{\prime}\right)^{3}($ Since $\mathrm{V} \propto 1 / \mathrm{d})$
$\Rightarrow\left(\mathrm{d}^{\prime} / \mathrm{d}\right)=(1 / 32)^{-3}=(1 / 32)^{-1.4}=128=32 x$
$\Rightarrow x=4$
Q. 5 [8]
$\mathrm{w}=\mathrm{Pdv}$
$=1 \times(2.5-2.0)$
$=-0.5$ litre-atm
$=\frac{-0.5 \times 1.987 \times 4.184}{0.0821}=-50.63 \mathrm{~J}$
\because work is carried out of constant P and thus irreversible
from $1^{\text {st }}$ law of thermodynamics
$q=\Delta U-w$
$58.63=\Delta \mathrm{U}+50.63$
$\Delta \mathrm{U}=8$ joule
Q. 6 [2]

$$
\Delta \mathrm{H}_{\text {fusion }}=6.025 \times 1000 \mathrm{~J} \mathrm{~mol}^{-1}
$$

$$
=\frac{6025}{18} \mathrm{~J} / \mathrm{g}^{-1}=334.72 \mathrm{Jg}^{-1}
$$

$$
\Delta \mathrm{S}_{\text {fusion }}=\frac{\Delta \mathrm{H}_{\text {fusion }}}{\mathrm{T}_{\mathrm{f}}}=\frac{334.72}{167 \mathrm{~K}}=2 \mathrm{Jk}^{-1} \mathrm{~g}^{-1}
$$

Q. 7 [5]
$\gamma=1.4$
$\mathrm{C}_{\mathrm{V}}=\frac{5}{2} \mathrm{R} \quad \mathrm{C}_{\mathrm{P}}=\frac{7}{2} \mathrm{R}$
$\Delta \mathrm{H}=85$ Joule at constant pressure
$\Delta \mathrm{T}=\frac{85}{\mathrm{nC}_{\mathrm{p}}}=\frac{140 \times 2}{7 \mathrm{n} \times \mathrm{R}}=\frac{40}{\mathrm{n}}$
Now, $w=-n R \Delta T=-n \times 2 \times \frac{40}{n}=-80 J$
$\mathrm{q}_{\mathrm{P}}=\Delta \mathrm{H}=\Delta \mathrm{U}+(-\mathrm{W}), \quad \Delta \mathrm{U}=\Delta \mathrm{H}+\mathrm{W}$
$=85-80=5 \mathrm{~J}$
Q. 8 [2]

Reversible work is maximum work
$\mathrm{w}=-2.303 \mathrm{nRT}$
$\log _{10}\left(\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}\right)=2.303 \times \frac{16}{32} \times 8.314 \times 300 \times \log \frac{25}{5}$

$$
=2.01 \times 10^{3} \text { joule }=2 \mathrm{~kJ}
$$

Q. 9 [0]
$P_{e x t}=0, w=-p_{\text {ext }\left(v_{2}-v_{1}\right)}=-0\left(v_{2}-v_{1}\right)=0$
As temp is not given, assume it as constant and therefore $\Delta \mathrm{E}=0$

$$
\Delta E=q+w \Rightarrow 0=q+0=0, \Delta H=0
$$

Q. 10 [9]

In isothermal reversible process
$\Delta \mathrm{S}=\mathrm{q}_{\mathrm{rev}} / \mathrm{T}$
$\mathrm{q}=-\mathrm{W}=2.303 \mathrm{RT} \log \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)$
$=2.303 \times 8.314 \times 300 \log 3=2740.6 \mathrm{~J} \mathrm{~mol}^{-1}$

$$
\Delta \mathrm{S}_{\mathrm{system}}=\frac{\mathrm{q}_{\mathrm{rev}}}{\mathrm{~T}}=\frac{2740.6}{300}=9.135 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \cong 9
$$

Q. 11 [1]

$\rho_{L}=0.075 \times 40=3 \mathrm{Cal}$
$\rho_{P}=0.125 \times 40=5 \mathrm{Cal}$
$\frac{\rho_{P}}{\rho_{L}}=\frac{5}{3}=1.66$ gas is mono atomic

Q. 12 [1]

Heat of neutralisation of a strong acid by strong base is -13.7 Kcal
1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ furnishes 2 moles of H^{+}
Q. 13 [6]
$\Delta H=12 \mathrm{Kcal}$
$\Delta \mathrm{Hf}=\frac{12}{2}=6 \mathrm{Kcal}$
Q. 14 [6]

$$
\begin{aligned}
& \Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{nRT} \\
& \Delta \mathrm{n}=\frac{3.6}{2 \times 10^{-3} \times 300}=6
\end{aligned}
$$

Q. 15 [7]

Since $\Delta G=\Delta H-T \Delta S$
But at equilibrium, $\Delta \mathrm{G}=0=\Delta \mathrm{H}-\mathrm{TS}$
$\therefore \Delta \mathrm{S}=\frac{\Delta H}{T}=\frac{2000}{286}=7 \mathrm{~J} / \mathrm{mole} / \mathrm{K}$
Q. 16 [8]

Theoretical heat of formation of $\mathrm{NO}_{2} 142 \mathrm{KJ} / \mathrm{mol}$
$\frac{1}{2} \mathrm{~N}_{2}+\mathrm{O}_{2} \longrightarrow \mathrm{O}=\mathrm{N}-\mathrm{O}$
$\Delta \mathrm{H}_{\text {(Theoretical) }}=\frac{1}{2} \times 946+498-222-607$
$=142 \mathrm{~kJ} / \mathrm{mol}$
Q. 17 [3]
$\mathrm{N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{H}=30 \mathrm{~kJ}$
$\frac{1}{2} \mathrm{~N}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow N O(g)$
$\Delta \mathrm{H}=90 \mathrm{~kJ}$
By eq [4×(ii) $-2 \times(\mathrm{i})]$

$$
\begin{aligned}
& 2 \mathrm{~N}_{2} \mathrm{O}+\mathrm{O}_{2} \longrightarrow 4 \mathrm{NO} \quad \begin{array}{l}
\Delta \mathrm{H}
\end{array}=300 \mathrm{~kJ} \\
& 3 \times 10^{2} \mathrm{~kJ} \\
& \therefore \mathrm{x}=3
\end{aligned}
$$

Q. 18 [4]

$$
\mathrm{e}_{\mathrm{A}-\mathrm{A}}=\mathrm{a} ; \quad \mathrm{e}_{\mathrm{A}-\mathrm{B}}=\mathrm{a} ;
$$

$\mathrm{e}_{\mathrm{B}-\mathrm{B}}=0.5 \mathrm{a}$
Also, $\frac{1}{2} A_{2}+\frac{1}{2} B_{2} \longrightarrow A B$;
$\Delta \mathrm{H}=-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\therefore \Delta H=-\left[e_{A-B}\right]+\frac{1}{2}\left[e_{A-A}+e_{B-B}\right]$
$=-\mathrm{a}+\frac{1}{2}[a+0.5 a]$

$$
-100=-0.25 a
$$

$\therefore \quad \mathrm{a}=400 \mathrm{~kJ} \mathrm{~mol}^{-1}=4 \times 10^{2}$
$\therefore \quad \mathrm{X}=4$
\therefore Resonance Energy $=142-134=8 \mathrm{~kJ} / \mathrm{mol}$.
Q. 19 [6]

$$
x(100)=(10-x)(150) \Rightarrow x=6
$$

KVPY

PREVIOUS YEAR'S

Q. 1
 (A)

According to KTG
Force of attraction and repulsion amongst molecules of ideal gas are negligible So, $\Delta \mathrm{H}=0$
and randomness increases due to increase in volume so $\Delta \mathrm{S}=+\mathrm{ve}$.
Q. 2 (D)
$(\Delta S)_{\text {system }}+(\Delta S)_{\text {surrounding }}>0$ (irreversible process)
Q. 3 (D)
Q. 4 (C)

$$
\begin{aligned}
& \Delta \mathrm{S}=\frac{\mathrm{nRT}}{\mathrm{~T}} \operatorname{In} \frac{\mathrm{v}_{2}}{\mathrm{v}_{1}} \\
& =\mathrm{nR} \operatorname{In} \frac{\mathrm{v}_{2}}{\mathrm{v}_{1}} \\
& =2.303 \mathrm{nR} \log \frac{\mathrm{v}_{2}}{\mathrm{v}_{1}} \\
& =2.303 \times 2 \times 8.314 \times 1 \\
& =38.3 \mathrm{~J} / \mathrm{k}
\end{aligned}
$$

Q. 5 (C)
$\Delta \mathrm{U}=0, \Delta \mathrm{H}=0$
Q. 6 (A)
$\Delta \mathrm{S}=\frac{\Delta \mathrm{H}_{\text {Melting }}}{\mathrm{T}_{\mathrm{F} . \mathrm{P}}}=\frac{6 \times 1000}{273} \frac{\mathrm{~J}}{\mathrm{~K}}$
$=21.978 \approx 22 \mathrm{~J} / \mathrm{k}$
Q. 7 (B)
$\mathrm{N}_{2}+2 \mathrm{H}_{2} \rightarrow 1 \mathrm{~N}_{2} \mathrm{H}_{4} \quad ; \Delta \mathrm{H}_{\mathrm{f}}$ $\Delta \mathrm{H}_{\mathrm{f}}=1 \times \mathrm{E}_{\mathrm{N} \equiv \mathrm{N}}+2 \mathrm{E}_{\mathrm{H}-\mathrm{H}}-4 \mathrm{E}_{\mathrm{N}-\mathrm{H}}-1 \mathrm{E}_{\mathrm{N}-\mathrm{N}}$
$=[(1 \times 946)+(2 \times 435)-4 \times(389)-1 \times(159)] \mathrm{kJ}$
$=101 \mathrm{~kJ} / \mathrm{mol}$ is :
Q. 8 (D)
$\mathrm{W}=-\mathrm{nRT}=-\left(1 \times 8.314 \times 10^{-3} \times 373\right) \mathrm{kJ}$
$=-3.10 \mathrm{~kJ}$
$\mathrm{q}=\Delta \mathrm{H}=41 \mathrm{~kJ}$
$\& \Delta \mathrm{E}=\mathrm{q}+\mathrm{q}=(41-3.1) \cong 37.9 \mathrm{~kJ}$
Q. 9 (A)
$\mathrm{N}_{2}+3 \mathrm{X}_{2} \rightarrow 2 \mathrm{NX}_{3}$
$\mathrm{N}_{2}+3 \mathrm{~F}_{2} \rightarrow 2 \mathrm{NF}_{3}$
$\Delta \mathrm{H}_{\mathrm{NF}_{3}}=941+3(155)-6(272)=-226$
$\Delta \mathrm{H}_{\mathrm{NCl}_{3}}=941+3(242)-6(200)=+467$
Q. 10 (D)

Use the concept of calorimetry and solve to get the answer.
Q. 11 (C)

For process $\mathrm{A} \rightarrow \mathrm{C}, \mathrm{W}=0, \Delta \mathrm{E}=0, \mathrm{q}=0$
For process $\mathrm{A} \rightarrow \mathrm{B}$
$\mathrm{W}=-1(1.5-1)=-0.5$ lit. atm
$\Delta \mathrm{E}=\mathrm{q}+\mathrm{W}$
$0=\mathrm{q}+\mathrm{W}$
$q=-W=-(-0.5)=0.5$ lit. atm
For process $\mathrm{B} \rightarrow \mathrm{C}$, $\mathrm{W}=1 \mathrm{~atm}$
$\Delta E=q+W$
$0=\mathrm{q}-\mathrm{W}$
$-\mathrm{q}=\mathrm{W}=-1 \mathrm{~atm}$
\therefore Total heat exchanged $=1.5$
Q. 12 (D)
$\mathrm{q}=\mathrm{mc} \Delta \mathrm{t}+$ heat of vapourisation
$=1000 \times 2.44(351.45-293.45)+855 \times 1000 \mathrm{~J}$ $=9.97 \times 10^{5} \mathrm{~J}$
Q. 13 (A)

Number of H -bond is $\mathrm{A}-\mathrm{T}$ pair $=2$, while no of H -bond in G-C pair is 3. therefore
(i) Total number of $\mathrm{A}-\mathrm{T} . \mathrm{H}$-bond $=$ number of $\mathrm{A}-\mathrm{T}$ pair \times Number of H bond $=5 \times 2=10$
(ii) Total number of $\mathrm{G}-\mathrm{C} . \mathrm{H}$-bond $=$ number of $\mathrm{G}-\mathrm{C}$ pair \times Number of H bond $=3 \times 3=9$
total energy required to dissociate the stand $=10 \mathrm{x}+$ 9y Kcal mol^{-1}

Q. 14 (B)

$\Delta \mathrm{H}_{\text {reaction }}^{\circ}=3 \times 0+\frac{1}{2} \times 0+6 \times(-393.5)+5 \times(-241.8)-$ (2×-364)
$=-2842 \mathrm{~kJ} \rightarrow$ for 2 mole of nitroglycerine
for 1 mole of for $227.1 \mathrm{~g}=\frac{2842}{2}$
for $1 \mathrm{~g}=-\frac{2842}{2 \times 227.1} \times 10=-62.5 \mathrm{KJ}$

Q. 15 (D)

For a spontaneous process entropy change of the system plus surrounding must be positive.

Q. 16 (A)

Free expansion of gas
when a gas expands in vacuum work done by if is $=0$
As $\mathrm{P}_{\mathrm{ext}}=0$
As no heat is supplied to the system $q=0 \&$

$$
\Delta \mathrm{E}=\Delta \mathrm{H}=\Delta \mathrm{T}=0
$$

So, internal energy remains constant.

Q. 17 (B)

$\mathrm{H}_{\text {Hydrageneration }}$

Q. 18 (B)

Entropy change $\Delta \mathrm{S}=\mathrm{nC}_{\mathrm{V}} \ell \mathrm{n}\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)+\mathrm{mR} \ell \mathrm{n}\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)$
Since temperature is constant throughout process.
$\mathrm{He}: \Delta \mathrm{S}=\mathrm{n}_{1} \mathrm{R} \ell \mathrm{n} \frac{\mathrm{V}_{1}+\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
$\mathrm{Ne}: \Delta \mathrm{S}=\mathrm{n}_{1} \mathrm{R} \ell \mathrm{n} \frac{\mathrm{V}_{1}+\mathrm{V}_{2}}{\mathrm{~V}_{2}}$
Total change in $(\Delta \mathrm{S})=\mathrm{n}_{1} \mathrm{R} \ell \mathrm{n}\left(\frac{\mathrm{V}_{1}+\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)$
$+n_{1} R \ell n\left(\frac{V_{1}+V_{2}}{V_{2}}\right)$

Q. 19 (B)

Since products are formed in the chemical reaction taking place at constant temperature and pressure, we can say that the reaction is spontaneous.
Hence, $\begin{aligned} & \Delta \mathrm{G}_{\text {reacion }}<0 \\ & \\ & \\ & \Delta \mathrm{~S}_{\text {total }}>0\end{aligned}$
Q. 20 (A)

Specific heat capacity of substance
$=0.86 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$
1 molal aqueous solution
$\Rightarrow 1000 \mathrm{gm}$ water has 58 gm solute
(total mass of solution $=1058 \mathrm{gm}$)
If we take 10 gm solution it would have
water $=\frac{1000}{1058} \times 10 \mathrm{gm}$
substance $=\frac{58}{1058} \times 10 \mathrm{gm}$
Heat required $=\frac{1000}{1058} \times 10 \times 4.2 \times 10$
$($ for water $)=396.975$
$\frac{58}{1058} \times 10 \times 0.86 \times 10($ for substance $)=4.715$
$=396.975+4.715=401.69 \simeq 401.7$
Q. 21 (A)
$A B$ is isothermal reversible expansion process i.e. $\Delta \mathrm{T}=0$ and S increases as there is increase in volume.
BC is adiabatic reversible expansion process $\left(\mathrm{q}_{\text {rev }}=0\right)$ i.e. temperature decreases and $\Delta \mathrm{S}=0$.
CD is isothermal reversible compression process i.e. $\Delta \mathrm{T}=0$ and S decreases as there is decrease in volume. $\Delta \mathrm{A}$ is adiabatic reversible compression process $\left(\mathrm{q}_{\text {rev }}=0\right)$ i.e. temperature decreases and $\Delta S=0$.

JEE-MAIN

PREVIOUS YEAR'S

Q. $1 \quad$ [309.16]

$$
\begin{aligned}
\mathrm{S}(\mathrm{~g}) & +6 \mathrm{~F}(\mathrm{~g}) \longrightarrow \mathrm{SF}_{6}(\mathrm{~g}) \\
\Delta \mathrm{H}_{\mathrm{R}}^{\mathrm{o}} & =\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{SF}_{6}\right)-\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}(\mathrm{~S})-6 \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}(\mathrm{~F}) \\
& =(-1100)-(275)-6(80)=-1855 \\
\Delta \mathrm{H}_{\mathrm{R}}^{\mathrm{o}} & =-1855=0-6 \times\left(\Delta \mathrm{H}_{\mathrm{S}-\mathrm{F}}^{\mathrm{o}}\right) \\
\Rightarrow & \Delta \mathrm{H}_{\mathrm{S}-\mathrm{F}}^{\mathrm{o}}=\frac{1855}{6}=309.16 \frac{\mathrm{~kJ}}{\mathrm{~mole}}
\end{aligned}
$$

Q. 2 [200]

For spontaneous reaction $\Delta \mathrm{G}<0$
$\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}<0$
$80,000-(\mathrm{T})(2 \mathrm{~T})<0$
$2 \mathrm{~T}^{2}>80,000$
$\mathrm{T}^{2}>40,000$
T > 200 K
\therefore Ans. 200 K
Q. 3 [15]
Q. 4 [743]

$$
\begin{aligned}
& \mathrm{NH}_{2} \mathrm{CN}(\mathrm{~S})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+ \\
& \mathrm{H}_{2} \mathrm{O}(\ell) \quad \Delta \mathrm{n}_{\mathrm{g}}=(1+1)-\frac{3}{2}=\frac{1}{2} \\
& \begin{array}{l}
\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT} \\
\quad=-744.24+\frac{1}{2} \times \frac{8.314 \times 298}{1000} \\
\quad=-744.24+1.24 \\
\quad \simeq-743 \mathrm{~kJ} / \mathrm{mole}
\end{array}
\end{aligned}
$$

Q. $5 \quad$ [673.4]
$\mathrm{Na}_{(\mathrm{s})} \longrightarrow \mathrm{Na}_{(\mathrm{g})}^{+}, \Delta \mathrm{H}=426.4 \mathrm{~kJ} /$ mole
$\frac{1}{2} \mathrm{Br}_{2}(\ell) \longrightarrow \mathrm{Br}_{(\mathrm{g})}^{-}, \Delta \mathrm{H}=325 \mathrm{~kJ} /$ mole

$$
\begin{aligned}
& \frac{\mathrm{Na}_{(\mathrm{g})}^{+}+\mathrm{Br}_{(\mathrm{g})}^{-} \rightarrow \mathrm{NaBr}_{(\mathrm{s})}, \Delta \mathrm{H}=-774.8 \mathrm{~kJ} / \mathrm{mole}}{\mathrm{Na}_{(\mathrm{s})}+\frac{1}{2} \mathrm{Br}_{2}(\ell) \rightarrow \mathrm{NaBr}_{(\mathrm{s})}, \Delta \mathrm{H}=?} \\
& \Rightarrow \Delta \mathrm{H}=426.4-325-774.8 \\
& =-673.4 \mathrm{~kJ} / \mathrm{mole}
\end{aligned}
$$

Q. 6 [1380]

$\Delta_{\mathrm{r}} \mathrm{G}^{\circ}=-\mathrm{RTln} \mathrm{K}_{\text {eq }}$
$=-\mathrm{R} \times 300 \times 2 \times 2.3$
$=-1380 \mathrm{R}$
Q. $7 \quad[150.72)]$

$$
\Delta \mathrm{G}^{\mathrm{o}}=\left(\mathrm{G}_{\mathrm{m}}^{\mathrm{o}}\right)_{\mathrm{C}_{6} \mathrm{H}_{6}}-3\left(\mathrm{G}_{\mathrm{m}}^{\mathrm{o}}\right)_{\mathrm{C}_{2} \mathrm{H}_{6}}
$$

$$
=-1.4 \times 10^{5}-3 \times 2.4 \times 10^{5}
$$

$$
=-8.6 \times 10^{5} \text { Joule }
$$

$$
-2.303 R T \log _{10} \mathrm{k}=-8.6 \times 10^{5}
$$

$$
-2.303 \times 8.314 \times 298 \log _{10} \mathrm{k}=-8.6 \times 10^{5}
$$

$$
\log _{10} \mathrm{k}=150.72
$$

Q. 8 [230]

Given reaction:
$3 \mathrm{CaO}+\mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{Ca}$
Now, $\mathrm{D}_{\mathrm{r}} \mathrm{H}^{\circ}=\mathrm{S}_{\mathrm{f}} \mathrm{H}^{\circ}{ }_{\text {Products }}-\mathrm{SD}_{\mathrm{f}} \mathrm{H}^{\circ}{ }_{\text {Reactants }}$
$=[1 \times(-1675)+3 \times 0]-[3 \times(-635)+2 \times 0]$
$=+230 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Q. 9 [2218]
$\mathrm{T}=298 \mathrm{~K}, \mathrm{R}=8.314 \frac{\mathrm{~J}}{\mathrm{molk}}$
\rightarrow Chemical reaction is
$\mathrm{Fe}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2}(\mathrm{~g})$
$50 \mathrm{~g} \mathrm{P}=1$ bar

$$
=\frac{50}{50.85} \mathrm{~mol}
$$

$$
\frac{50}{50.85} \mathrm{~mol}
$$

\rightarrow Work done for 1 mol gas
$=-\mathrm{P}_{\text {ext }} \times \mathrm{DV}$
$=$ Dng RT
$=-1 \times 8.314 \times 298 \mathrm{~J}$
\rightarrow Work done for $\frac{50}{50.85} \mathrm{~mol}$ of gas
$=-1.8314 \times 298 \times \frac{50}{50.85} \mathrm{~J}$
$=-2218.059 \mathrm{~J}$
; -2218 J
Q. 10 (1)
(A) Water $\xrightarrow{0^{\circ} \mathrm{C}}$ ice; $\Delta \mathrm{S}=-\mathrm{ve}$
(B) Water $\xrightarrow{-10^{\circ} \mathrm{C}}$ ice; $\Delta \mathrm{S}=-\mathrm{ve}$
(C) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta \mathrm{S}=-\mathrm{ve}$
(D) Adsorption; $\Delta \mathrm{S}=-\mathrm{ve}$
(E) $\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) ; \Delta \mathrm{S}=+\mathrm{ve}$
Q. 11 [128]
$\Delta \mathrm{rH}=\left[\epsilon_{\mathrm{C}-\mathrm{C}}+2 \epsilon_{\mathrm{C}-\mathrm{H}}\right]-\left[\epsilon_{\mathrm{C}=\mathrm{C}}+\epsilon_{\mathrm{H}-\mathrm{H}}\right]$

$$
=[347+2 \times 414]-[611+436]
$$

$$
=128
$$

Q. 12 [31]
Q. 13 [50]
Q. 14 [101]
Q. 15 [26]
Q. 16 [21]
Q. 17 [336]
Q. 18 [38]
Q. 19 [718]
Q. 20 [964]
Q. 21 [82]
Q. 22 (2)
Q. 23 [5]

JEE-ADVANCED

PREVIOUS YEAR'S

Q. $1 \quad \begin{aligned} & (\mathrm{A}-\mathrm{p}, \mathrm{r}, \mathrm{s}) ;(\mathrm{B}-\mathrm{r}, \mathrm{s}) ;(\mathrm{C}-\mathrm{t}) ;(\mathrm{D}-\mathrm{p}, \mathrm{q}, \mathrm{t}) \\ & \\ & (\mathrm{A}) \mathrm{CO}_{2}(\mathrm{~s}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})\end{aligned}$

It is phase transition. The process is endothermic (sublimation).
Gas is produced, so entropy increases.
(B) On heating CaCO_{3} decomposes. So, process is endothermic.
The entropy increases as gaseous product is formed.
(C) $2 \mathrm{H} \bullet \longrightarrow \mathrm{H}_{2}(\mathrm{~g})$

Entropy decreases as number of gaseous particles decreases.
(D) It is phase transition.

White and red P are allotopes.
Red P is more stable than white. So $\Delta \mathrm{H}$ is - ve.
Q. 2 (A, C)

(A) $\Delta \mathrm{S}_{\mathrm{x} \rightarrow \mathrm{z}}=\Delta \mathrm{S}_{\mathrm{x}-\mathrm{y}}+\Delta \mathrm{S}_{\mathrm{y} \rightarrow \mathrm{z}}$
(Correct)
(B) $\mathrm{W}_{\mathrm{x} \rightarrow \mathrm{y}}=\mathrm{W}_{\mathrm{x}-\mathrm{y}}+\mathrm{W}_{\mathrm{y} \rightarrow \mathrm{z}}$
(C) $\mathrm{W}_{x \rightarrow y \rightarrow z}=\mathrm{W}_{x-y}$
(Incorrect)
(D) $\Delta \mathrm{S}_{\mathrm{x} \rightarrow \mathrm{y} \rightarrow \mathrm{z}}=\Delta \mathrm{S}_{\mathrm{x}-\mathrm{y}}$
(Correct)
(Incorrect)
Q. 3 (D)

$\therefore \quad \Delta \mathrm{H}=+1410+330-(350 \times 2)-\varepsilon_{\mathrm{C=C}}=+$
225
$\therefore \quad \varepsilon_{\mathrm{C}=\mathrm{C}}=1740-700-225=+815 \mathrm{KJ} / \mathrm{mol}$.
Q. 4 (A, D)

(A) $\mathrm{T}_{1}=\mathrm{T}_{2}$ (due to isothermal)
(B) $\mathrm{T}_{3}>\mathrm{T}_{1}$ (incorrect) cooling will take place in adiabatic expansion)
(C) $\mathrm{W}_{\text {isothermal }}>\mathrm{W}_{\text {adiabatic }}\{$ with sign, this is incorrect $\}$
(D) $\Delta \mathrm{U}_{\text {isothermal }}=0>\Delta \mathrm{U}_{\text {adiabatic }}=-\mathrm{ve}$

So, answer is (A,D).
Q. 5 (C)
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\ell)$
$\Delta_{\mathrm{C}} \mathrm{H}=6 \times \Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{CO}_{2}\right)+6 \Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right)-\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)-$
$6 \Delta_{\mathrm{f}}\left(\mathrm{O}_{2}, \mathrm{~g}\right)$
$=6 \times(-400-300)-(-1300)-0$
$=-4200+1300$
$=-2900 \mathrm{KJ} / \mathrm{mol}$
For one gram of glucose, enthalpy of combustion $=$
$-\frac{2900}{180}=-16.11 \mathrm{KJ} / \mathrm{g}$.
Q. 6 (B)

For $\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $\mathrm{T}=100^{\circ} \mathrm{C}$, 1atm
equilibrium exists. $\therefore \Delta \mathrm{G}=0, \Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=0$
$\Delta H=T \Delta S>0$ for system, since evaporation is endothermic
$\therefore(\Delta S)_{\text {system }}>0$, also $(\Delta S)_{\text {surrounding }}=\frac{\mathrm{q}_{\text {surr }}}{\mathrm{T}_{\text {surr }}}$
Heat gained by system $=$ heat lost by surroundings
$\therefore \mathrm{q}_{\text {surr. }}<0 \therefore(\Delta \mathrm{~S})_{\text {surr. }}<0$

(A,B,C)

Since the vessel is thermally insulated so
$\mathrm{q}=0$
$\mathrm{p}_{\text {ext }}=0$, so w $=0$
so $\Delta \mathrm{U}=0$ (ideal gas)
Hence $\Delta T=0$
$\Rightarrow \Delta \mathrm{T}=0$
$\Rightarrow \mathrm{T}_{2}=\mathrm{T}_{1}$
$\Rightarrow \mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{P}_{1} \mathrm{~V}_{1}$
The process is however adiabatic irriversible.
So we cannot apply $\mathrm{P}_{2} \mathrm{~V}_{2}{ }^{\gamma}=\mathrm{P}_{1} \mathrm{~V}_{1}{ }^{\gamma}$
Hence ans is (A), (B), (C)
Q. 8 (A-R,T) (B-P,Q,S) (C-P,Q,S) (D-P,Q,S,T)
(A) $\quad \begin{aligned} \mathrm{H}_{2} \mathrm{O}(\ell) \longrightarrow & \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \text { at } 273 \mathrm{~K} . \& 1 \mathrm{~atm} \\ \Delta \mathrm{H} & =-\mathrm{ve}=\mathrm{q}\end{aligned}$

$$
\Delta \mathrm{S}_{\text {sys }}<0, \quad \Delta \mathrm{G}=0
$$

$\mathrm{w} \neq 0$ (as water expands on freezing), $\Delta \mathrm{U}$
$\neq 0$
(B) Free expansion of ideal gas.

$$
\mathrm{q}=0 \quad \mathrm{w}=0 \quad \Delta \mathrm{U}=0 \quad \Delta \mathrm{~S}_{\text {sys }}>0 \Delta \mathrm{G}<0
$$

(C) Mixing of equal volume of ideal gases at constant pressure \& temp in an isolated container $\mathrm{q}=0, \quad \mathrm{w}=0, \quad \Delta \mathrm{U}=0, \quad \Delta \mathrm{~S}_{\text {sys }}>0$
$\Delta \mathrm{G}<0$
(D) $\quad \mathrm{H}_{2}(\mathrm{~g}) 300 \mathrm{~K} \xrightarrow[\text { Heating, 1atm }]{\text { Reversible }} 600 \mathrm{~K}$
$\xrightarrow[\text { Cooling, 1atm }]{\text { Reversible }} 300 \mathrm{~K}$.

$$
\mathrm{q}=0, \mathrm{w}=0, \Delta \mathrm{U}=0, \Delta \mathrm{G}=0, \Delta \mathrm{~S}_{\text {sys }}=0
$$

Comprehension \# 1 (Q. No. 9 to 10)

Q. 9
(A)

Let the heat capacity of insulated beaker be C.
Mass of aqueous content in expt. $1=(100+100) \times 1$
$=200 \mathrm{~g}$
\Rightarrow Total heat capacity $=(\mathrm{C}+200 \times 4.2) \mathrm{J} / \mathrm{K}$
Moles of acid, base neutralised in expt. $1=0.1 \times 1=$ 0.1
\Rightarrow Heat released in expt. $1=0.1 \times 57=5.7 \mathrm{KJ}$
$\Rightarrow 5.7 \times 1000=(\mathrm{C}+200 \times 4.2) \times \Delta \mathrm{T}$.
$5.7 \times 1000=(\mathrm{C}+200+4.2) \times 5.7$
$\Rightarrow(C+200 \times 4.2)=1000$
In second experiment,
$\mathrm{n}_{\mathrm{CH}_{3} \mathrm{COOH}}=0.2, \mathrm{n}_{\mathrm{NaOH}}=0.1$
Total mass of aqueous content $=200 \mathrm{~g}$
\Rightarrow Total heat capacity $=(\mathrm{C}+200 \times 4.2)=1000$
\Rightarrow Heat released $=1000 \times 5.6=5600 \mathrm{~J}$.
Overall, only 0.1 mol of $\mathrm{CH}_{3} \mathrm{COOH}$ undergo neutralization.
$\Rightarrow \quad \Delta \mathrm{H}_{\text {neutraization }}$ of $\mathrm{CH}_{3} \mathrm{COOH}=\frac{-5600}{0.1}=-56000$
J/mol

$$
=-56 \mathrm{KJ} / \mathrm{mol} .
$$

$\Rightarrow \quad \Delta \mathrm{H}_{\text {ionization }}$ of $\mathrm{CH}_{3} \mathrm{COOH}=57-56=1 \mathrm{KJ} / \mathrm{mol}$

Q. $10 \quad$ (B)

Final solution contain 0.1 mole of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ each.
Hence it is a buffer solution.
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$=5-\log 2+\log \frac{0.1}{0.1}=4.7$

Q. 11 (C)

\because Process is done against const. External P, process will be irreversible.

$$
\begin{aligned}
& \therefore " \mathrm{~S}_{\text {sure }}=\frac{-P_{e x t}\left(V_{2}-V_{1}\right)}{T}= \\
& \frac{-3 \times(2-1) \times 101.3}{300}=-1.013 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

At $298 \mathrm{~K}, \mathrm{SdT}=0$
$\therefore \mathrm{dG}=\mathrm{VdP}$
$\int_{1}^{\mathrm{P}} \mathrm{dG}=\int_{1}^{\mathrm{P}} \mathrm{VdP} \therefore \mathrm{G}-\mathrm{G}^{\circ}=\mathrm{V}(\mathrm{P}-1)$
$[\because$ Solids involved $\therefore \mathrm{V}$ almost constant]
$\therefore \Delta_{\mathrm{r}}^{\mathrm{G}}=\left[\mathrm{G}_{\text {diamond }}^{\circ}+\mathrm{V}_{\mathrm{d}}(\mathrm{P}-1)\right]-\left[\mathrm{G}_{\text {graphite }}^{\circ}+\mathrm{V}_{\mathrm{g}}(\mathrm{P}-1)\right]$
$0=2.9 \times 10^{3}+(\mathrm{P}-1) 10^{5}\left(-2 \times 10^{-6}\right)$
$\therefore \mathrm{P}=14501$ bat

Q. 13 (A,B)

$$
\Delta \mathrm{S}_{\text {Surr }}=\frac{-\Delta \mathrm{H}}{\mathrm{~T}_{\text {Surr }}}
$$

For endothermic, if $\mathrm{T}_{\text {sur. }}$ increases, $\Delta \mathrm{S}_{\text {surr }}$ will increases. For exothermic, if $\mathrm{T}_{\text {surf }}$ increases, $\Delta \mathrm{S}_{\text {surr }}$. will decreases.

Q. 14 (ACD)

(A)

Area under curve in reversible isothermal is more. So, more work will be done by gas.
(B) $\mathrm{T}_{1}=\mathrm{T}_{2} \Rightarrow \Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}=0$

In reversible adiabatic expansion, $\mathrm{T}_{2}<\mathrm{T}_{1}$
$\therefore \Delta \mathrm{T}=-\mathrm{ve} \therefore \Delta \mathrm{U}=-\mathrm{ve}$
(C) In Free expansion, $\mathrm{P}_{\text {ext }}=0 \therefore \mathrm{~W}=0$

If carried out isothermally $(\Delta U=0) \Rightarrow q=0$ (Adiabatic) ; From I law
If carried out adiabatically $(\mathrm{q}=0) \Rightarrow \Delta \mathrm{U}=0$ (isothermal) ; From I law

During irreversible compression, maximum work is done on the gas (corresponding to shaded area)
Q. 15 (B,C)
$\mathrm{AC} \rightarrow$ Isochoric
$\mathrm{AB} \rightarrow$ Isothermal
$\mathrm{BC} \rightarrow$ Isobaric
\# $\quad \mathrm{q}_{\mathrm{AC}}=\Delta \mathrm{U}_{\mathrm{BC}}=\mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$\mathrm{W}_{\mathrm{AB}}=\mathrm{nRT}_{1} \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right) \quad \mathrm{A}$ (wrong)
\# $\quad \mathrm{q}_{\mathrm{BC}}=\Delta \mathrm{H}_{\mathrm{AC}}=\mathrm{nC}_{\mathrm{P}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$ $\mathrm{W}_{\mathrm{BC}}=-\mathrm{P}_{2}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right) \quad \mathrm{B}$ (correct)
\# $\quad \mathrm{nC}_{\mathrm{p}}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)<\mathrm{nC}_{\mathrm{V}}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \mathrm{C}$ (correct)
$\Delta \mathrm{H}_{\mathrm{CA}}<\Delta \mathrm{U}_{\mathrm{CA}}$
\#
D (wrong)

Q. 16 (A,B)

Enthalpy of formation is defined as enthalpy change for formation of 1 mole of substance from its elements, present in their natural most stable form.
Q. 17 (A,B,C)

For 1 mole Vander Waal's gas
$\mathrm{P}=\frac{\mathrm{RT}}{\mathrm{V}-\mathrm{b}}-\frac{\mathrm{a}}{\mathrm{V}^{2}}$
If $\mathrm{P}_{\mathrm{ext}}=\mathrm{P}$, means process is reversible. For Vanderwaal gas, expression is correct for all reversible process.
Q. 20 [141.33 or 141.34]

From the plot when, $\frac{10^{4}}{T}=10 \Rightarrow T=1000 K$
$\operatorname{In}\left(\frac{\mathrm{P}_{2}}{1}\right)=-3$
Substituting in equation
$\operatorname{In}\left(\frac{\mathrm{P}_{2}}{1}\right)=-\frac{\Delta \mathrm{H}^{\circ}}{\mathrm{RT}}+\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}}$
We get,
$-3=-\frac{2 \times 10^{4} \times \mathrm{R}}{\mathrm{R} \times 1000}+\frac{\mathrm{S}^{\circ}}{\mathrm{R}}$
$\Rightarrow \Delta S^{\circ}=17 \mathrm{R}$
$\Rightarrow \Delta \mathrm{S}^{\circ}=17 \times 8.314 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
$\Rightarrow \Delta \mathrm{S}^{\circ}=141.34 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$

Q. 21 (A, B, D)

From state I to II (Reversible isothermal expansion)
$\Rightarrow \mathrm{P}$ decreases, V increases, T constant
H constant \& S increases.
From state II to III (Reversible adiabatic expansion)
$\Rightarrow P$ decreases, V increases, T decreases
H decreases, S constant
\therefore Plots (A), (B), (D) are correct while (C) is wrong as from II to III, H is decreasing.
Q. 22 [10]
Q. 18 [935.00]
$\mathrm{SnO}_{2(\mathrm{~S})}+\mathrm{C}_{(\mathrm{S})} \rightarrow \mathrm{Sn}_{(\mathrm{S})}+\mathrm{CO}_{2(\mathrm{~g})}$
$\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=[-394]-[-581]=187 \mathrm{~kJ} / \mathrm{mole}$
$\Delta \mathrm{S}_{\mathrm{rxn}}^{\mathrm{o}}=[52+210]-[56+6]$
$=200 \mathrm{~J} / \mathrm{k}-\mathrm{mole}$
$\mathrm{T}=\frac{\Delta \mathrm{H}^{\mathrm{o}}}{\Delta \mathrm{S}^{\mathrm{o}}}=\frac{187 \times 1000}{200}=935 \mathrm{~K}$
Q. 19 [166.28]
$\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \operatorname{In}\left(\frac{\mathrm{P}}{1}\right)=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
$\operatorname{In}\left(\frac{\mathrm{P}}{1}\right)=-\frac{\Delta \mathrm{H}^{\circ}}{\mathrm{RT}}+\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}}$
Slope $=-\frac{\Delta \mathrm{H}^{\circ}}{\mathrm{R}}=10^{4} \times\left(-\frac{4}{2}\right)$
$\Rightarrow \Delta \mathrm{H}^{\mathrm{o}}=2 \times 10^{4} \times \mathrm{R}$
$=166.28 \mathrm{~kJ} / \mathrm{mole}$

